Content-aware and context-aware resource adaptation Juan Hamers – 2006-06-06 Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen.

Slides:



Advertisements
Similar presentations
Continuous verification for hardware/software multimedia systems Philippe Faes.
Advertisements

Context Awareness System and Service SCENE JS Lee 1 An Energy-Aware Framework for Dynamic Software Management in Mobile Computing Systems.
Doc.: IEEE /0709r2 Submission July 2009 Carlos Cordeiro, IntelSlide 1 Lightly Compressed Video Traffic Modeling Date: Authors: NameAffiliationsAddressPhone .
-1/20- MPEG 4, H.264 Compression Standards Presented by Dukhyun Chang
Software Architecture of High Efficiency Video Coding for Many-Core Systems with Power- Efficient Workload Balancing Muhammad Usman Karim Khan, Muhammad.
Measurements of Congestion Responsiveness of Windows Streaming Media (WSM) Presented By:- Ashish Gupta.
H.264/AVC Baseline Profile Decoder Complexity Analysis Michael Horowitz, Anthony Joch, Faouzi Kossentini, and Antti Hallapuro IEEE TRANSACTIONS ON CIRCUITS.
SCHOOL OF COMPUTING SCIENCE SIMON FRASER UNIVERSITY CMPT 820 : Error Mitigation Schaar and Chou, Multimedia over IP and Wireless Networks: Compression,
Evaluation of Data-Parallel Splitting Approaches for H.264 Decoding
Improving Scene Cut Quality for Real-Time Video Decoding Giovanni Motta, Brandeis University James A. Storer, Brandeis University Bruno Carpentieri, Universita’
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
TRADING OFF PREDICTION ACCURACY AND POWER CONSUMPTION FOR CONTEXT- AWARE WEARABLE COMPUTING Presented By: Jeff Khoshgozaran.
Service Differentiated Peer Selection An Incentive Mechanism for Peer-to-Peer Media Streaming Ahsan Habib, Member, IEEE, and John Chuang, Member, IEEE.
Efficient MPEG Compressed Video Analysis Using Macroblock Type Information Soo-Chang Pei, Yu-Zuong Chou IEEE TRANSACTIONS ON MULTIMEDIA, DECEMBER,1999.
Adaptive Content-Aware Scaling for Improved Video Streaming. Avanish Tripathi Mark Claypool Presented by: Huahui Wu Worcester Polytechnic Institute
Decision Trees for Error Concealment in Video Decoding Song Cen and Pamela C. Cosman, Senior Member, IEEE IEEE TRANSACTION ON MULTIMEDIA, VOL. 5, NO. 1,
1 Slice-Balancing H.264 Video Encoding for Improved Scalability of Multicore Decoding Michael Roitzsch Technische Universität Dresden ACM & IEEE international.
Processor Frequency Setting for Energy Minimization of Streaming Multimedia Application by A. Acquaviva, L. Benini, and B. Riccò, in Proc. 9th Internation.
H.264/AVC for Wireless Applications Thomas Stockhammer, and Thomas Wiegand Institute for Communications Engineering, Munich University of Technology, Germany.
4/24/2002SCL UCSB1 Optimal End-to-end Distortion Estimation for Drift Management in Scalable Video Coding H. Yang, R. Zhang and K. Rose Signal Compression.
Sujit Dey Adaptive Applications for Wireless Information Technology Sujit Dey ECE Department University of California, San Diego
09/24/02ICIP20021 Drift Management and Adaptive Bit Rate Allocation in Scalable Video Coding H. Yang, R. Zhang and K. Rose Signal Compression Lab ECE Department.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
N° 23 page 70page N° 24 page 70page N° 25 page 70page N° 26 page 70page N° 45 page 71page.
Low Latency Wireless Video Over Networks Using Path Diversity John Apostolopolous Wai-tian Tan Mitchell Trott Hewlett-Packard Laboratories Allen.
1. 1. Problem Statement 2. Overview of H.264/AVC Scalable Extension I. Temporal Scalability II. Spatial Scalability III. Complexity Reduction 3. Previous.
Adaptive Video Coding to Reduce Energy on General Purpose Processors Daniel Grobe Sachs, Sarita Adve, Douglas L. Jones University of Illinois at Urbana-Champaign.
Video Streaming via Transcoding Jianping Fan Department of Computer Science University of North Carolina at Charlotte Charlotte, NC 28223
EE 5359 H.264 to VC 1 Transcoding Vidhya Vijayakumar Multimedia Processing Lab MSEE, University of Arlington Guided.
Yun CAO Xianfeng ZHAO Dengguo FENG Rennong SHENG Video Steganography with Perturbed Motion Estimation.
Soner Yaldiz, Alper Demir, Serdar Tasiran Koç University, Istanbul, Turkey Paolo Ienne, Yusuf Leblebici Swiss Federal Institute of Technology (EPFL), Lausanne,
Philipp Merkle, Aljoscha Smolic Karsten Müller, Thomas Wiegand CSVT 2007.
Characterizing and Modeling the Impact of Wireless Signal Strength on Smartphone Battery Drain Ning Ding Xiaomeng Chen Abhinav Pathak Y. Charlie Hu 1 Daniel.
Client-controlled QoS Management in Networked Virtual Environments Patrick Monsieurs, Maarten Wijnants, Wim Lamotte Expertise Center for Digital Media.
Integrating Fine-Grained Application Adaptation with Global Adaptation for Saving Energy Vibhore Vardhan, Daniel G. Sachs, Wanghong Yuan, Albert F. Harris,
By Qian Deng MobiUS: Enable Together-Viewing Video Experience across Two Mobile Devices.
Predicting Content Change On The Web BY : HITESH SONPURE GUIDED BY : PROF. M. WANJARI.
Probabilistic Preemption Control using Frequency Scaling for Sporadic Real-time Tasks Abhilash Thekkilakattil, Radu Dobrin and Sasikumar Punnekkat.
Royalty Cost Based Optimization for Video Compression Emrah Akyol, Onur G. Guleryuz, and M. Reha Civanlar DoCoMo USA Labs, Palo Alto, CA USA.
Adaptive Data Aggregation for Wireless Sensor Networks S. Jagannathan Rutledge-Emerson Distinguished Professor Department of Electrical and Computer Engineering.
Image Processing and Computer Vision: 91. Image and Video Coding Compressing data to a smaller volume without losing (too much) information.
Adaptive Multi-path Prediction for Error Resilient H.264 Coding Xiaosong Zhou, C.-C. Jay Kuo University of Southern California Multimedia Signal Processing.
Performance Prediction for Random Write Reductions: A Case Study in Modelling Shared Memory Programs Ruoming Jin Gagan Agrawal Department of Computer and.
1 Adaptable applications Towards Balancing Network and Terminal Resources to Improve Video Quality D. Jarnikov.
MS Calibration for Protein Profiles We need calibration for –Accurate mass value Mass error: (Measured Mass – Theoretical Mass) X 10 6 ppm Theoretical.
Rate-distortion Optimized Mode Selection Based on Multi-channel Realizations Markus Gärtner Davide Bertozzi Classroom Presentation 13 th March 2001.
A New Coding Mode for Error Resilient Video EE368C Final Presentation Stanford University Sangoh Jeong Mar.8, 2001.
1 JEG hybrid model Iñigo Sedano June, Three years working at Tecnalia Technology Corporation, Telecom Unit, Broadband networks group, Spain (
Guillaume Laroche, Joel Jung, Beatrice Pesquet-Popescu CSVT
Dr. Sudharman K. Jayaweera and Amila Kariyapperuma ECE Department University of New Mexico Ankur Sharma Department of ECE Indian Institute of Technology,
NUS.SOC.CS5248 A Time Series-based Approach for Power Management in Mobile Processors and Disks X. Liu, P. Shenoy and W. Gong Presented by Dai Lu.
Impact of Power-Management Granularity on The Energy-Quality Trade-off for Soft And Hard Real-Time Applications International Symposium on System-on-Chip,
Adaptive Content-Aware Scaling for Improved Video Streaming. Avanish Tripathi Advisor: Mark Claypool Reader: Bob Kinicki.
Multimedia Computing and Networking Jan Reduced Energy Decoding of MPEG Streams Malena Mesarina, HP Labs/UCLA CS Dept Yoshio Turner, HP Labs.
Saving Bitrate vs. Users: Where is the Break-Even Point in Mobile Video Quality? ACM MM’11 Presenter: Piggy Date:
Hierarchical Systolic Array Design for Full-Search Block Matching Motion Estimation Noam Gur Arie,August 2005.
A Distributed and Adaptive Signal Processing Approach to Reducing Energy Consumption in Sensor Networks Jim Chou, et al Univ. of Califonia at Berkeley.
March 15, 2001Mark Kalman - ee368c Analysis of Adaptive Media Playout for Stochastic Channel Models Mark Kalman Class Project EE368c.
Media Compression.
Forecasting with Cyber-physical Interactions in Data Centers (part 3)
Adaptive Block Coding Order for Intra Prediction in HEVC
Overview of the Scalable Video Coding
Pattern Recognition Sergios Theodoridis Konstantinos Koutroumbas
Video Compression - MPEG
Streaming To Mobile Users In A Peer-to-Peer Network
Video Transcoding for Wireless Video
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Chavit Denninnart, Mohsen Amini Salehi and Xiangbo Li
Kyoungwoo Lee, Minyoung Kim, Nikil Dutt, and Nalini Venkatasubramanian
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Presentation transcript:

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 1 Content-aware and context- aware resource adaptation Juan Hamers (06/06/2006)

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 2 Content providers offer multiple versions : which to choose Media stream low medium high small medium large 56k 100k 300k

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 3 2 Major issues for client when selecting media Decoder powerful enough –No skipping distortion Sufficient battery life Battery Empty

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 4 Impact of content itself on decoding time / Energy consumption Platform capacity

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 5 Exploiting this variance to adapt resources for energy efficiency P(W) t (ms) 5 DVS (P ~ fV², V ~ f) frequency power

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 6 Oracle needed for accurate timing information Missed deadline Less Energy conserved P(W) t (ms) 5

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 7 Content-provider has to add scenario information Platform & decoder independent Adequate Resources

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 8 Looking into content structure …… Decoder MB type Scaling

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 9 A Macroblock profile summarizes the structure of a GOP/frame Histogram

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 10 Macroblock profile relates to decode time MB- profile Decode time

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 11 Provider determines scenarios based upon macroblock profiles Content Provider

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 12 Client trains Scenario Adaptation Table with representative samples freqVEn (J)dtime (ms) Client Side Content Provider

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 13 What about new content ???

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 14 Determining resource needs during handshake Energy / Time

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 15 Client uses scenario IDs and its SAT to scale frequency & voltage freqV Decoder … …

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 16 Experimental setup 12 Video sequences (300 frames) Macroblock profiles per GOP/frame Train with 11, test other Cluster centroid for training target platform (+ Additional offset) 12/32 scenarios performed best

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 17 Predicting decode complexity

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 18 Decoder Adaption : 3 Cases considered

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 19 We realized an average energy reduction of 46%

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 20 Results energy prediction

Content-aware and context-aware resource adaptation Juan Hamers – Faculteit Ingenieurswetenschappen – Vakgroep Elektronica en Informatiesystemen pag. 21 Conclusion Macroblock profiles correlate well with decoding time/Energy usage. Recognizing scenarios derived from macroblock profiles allows for –efficient resource adaption –Predicting required resources –In a platform independent way Average energy reduction of 46% Used for resource prediction < 2 % error