Gluconeogenesis + Evaluations 4/23/2003 Overview of Glucose Metabolism.

Slides:



Advertisements
Similar presentations
Biochemistry Lecture 11.
Advertisements

Gluconeogenesis Synthesis of "new glucose" from common metabolites
Biochemistry department
Regulation of Glycolysis & Gluconeogenesis
Regulation of Glycolysis & Gluconeogenesis Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry I.
Pathways for Pyruvate The pyruvate produced from glucose during glycolysis can be further metabolized in three possible ways For aerobic organisms, when.
Gluconeogenesis (formation of new sugar) 1. Why gluconeogenesis?
Gluconeogenesis.
Gluconeogenesis : An overview
Glycogen Metabolism 23.8 Gluconeogenesis: Glucose Synthesis Chapter 23 Metabolic Pathways for Carbohydrates.
Biochemistry 432/832 September 03 Chapter 23 G&G Gluconeogenesis Glycogen metabolism.
KULSOOMKULSOOM KULSOOMKULSOOM KULSOOMKULSOOM KULSOOMKULSOOM Gluconeogenesis Dr. Bibi Kulsoom.
CARBOHYDRATE METABOLISM. METABOLISM? WHY?  A 59-year-old man with a history of diabetes and alcohol abuse is brought to the emergency room in a semiconscious.
Gluconeogenesis Dr.S.Chakravarty MD.
Professor of Biochemistry Gluconeogenesis
Metabolism of glycogen. Regulation of glycogen metabolism Regulating site for glycogen synthesis Glycogen synthase Regulating site for glycogen catabolism.
Chapter 12 (part 1) Citric Acid Cycle. Gylcolysis TCA Cycle Electron Transport and Oxidative phosphorylation.
Additional Pathways in Carbohydrate Metabolism
BIOC DR. TISCHLER LECTURE 26 GLYCOLYSIS AND GLUCONEOGENESIS-2
Regulation of Glycolysis/Gluconeogenesis
Prentice Hall c2002Chapter 131 Chapter 13 Additional Pathways in Carbohydrate Metabolism Insulin, a 51 amino acid polypeptide that regulates carbohydrate.
Gluconeogenesis and Beta- oxiation Lecture 22. Glucogneogenesis Essentially a reversal of glycolysis Pyruvate  Glucose Requires three irreversible steps.
UNIT II: Intermediary Metabolism
Gluconeogenesis / TCA 11/12/2009 Gluconeogenesis Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids.
Gluconeogenesis Some tissues, such as brain, RBCs, kidney medulla, testes, embrionic tissues and exercising muscle require a continuing supply of glucose.
Gluconeogenesis Dr. Tarek A Salem.
CHO Metabolism. In mammals, some tissues depend almost completely on glucose for their metabolic energy The brain alone requires about 120 g of glucose.
Biosynthesis of glucose – gluconeogenesis Carbohydrates provide a significant portion of human caloric intake.
CITRIC ACID CYCLE -Anaplerosis Reading: l Harper’s Biochemistry Chapter 18 l Lehninger Principles of Biochemistry 3rd Ed. pp
Dr.S.Chakravarty MD. Gluconeogenesis is the process of synthesizing glucose or glycogen from non-carbohydrate precursors.
Carbohydrate metabolism. CHO supply Diet Endogenous reserves –Liver –Muscle –Blood Limited Anaerobic glycolysis –Anaerobic Does not need oxygen Occurs.
Oxidative Decarboxylation and Krebs Cycle By Reem M. Sallam, M.D.; Ph.D. Clinical Biochemistry Unit, Pathology Dept. College of Medicine, King Saud University.
1 Carbohydrate metabolism Intermediary Metabolism Elizabeth F. Neufeld Suggested reference: Champe, Harvey and Ferrier, Lippincott’s Illustrated Reviews.
Glucose Metabolism: Gluconeogenesis By Amr S. Moustafa, MD, PhD Assistant Prof. & Consultant, Medical Biochemistry Unit, Pathology Dept., College of Medicine,
Overview of Glucose Metabolism
CHAPTER 17 Gluconeogenesis.
Carbohydrate anabolism We have covered some aspects of carbohydrate catabolism: glycolysis, PPP, citric acid cycle, etc. and now we turn to carbohydrate.
Glycolysis 1. From glucose to pyruvate; step reactions; 3
Gluconeogenesis; Regulation of Glycolysis & Gluconeogenesis Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry I.
After Digestion And Absorption
Gluconeogenesis.
Chapter 18 Storage Mechanisms and Control in Carbohydrate Metabolism Mary K. Campbell Shawn O. Farrell Paul.
Gluconeogenesis.
Exam III Review 11/19/2009 Exam 3 Review Chapters: 12Enzyme Kinetic Mechanisms 8Carbohydrates 14Metabolism 15Glucose Metabolism 16Glycogen Metabolism.
Coordinated regulation of glycolysis/gluconeogenesis
1 SURVEY OF BIOCHEMISTRY Glycogen. 2 2 Ways To Generate Glucose GlycogenolysisGluconeogenesis Break down of glycogen Glucose Glucose 1-Phosphate Glucose.
Regulation of Cellular respiration and Related pathways.
Gluconeogenesis Anabolic pathway that makes glucose from pyruvate Net result = reverse of glycolysis Three topics: 1. Thermodynamics 2. Enzymes 3. Regulation.
21-1 Principles and Applications of Inorganic, Organic, and BiologicalChemistry Denniston, Topping, and Caret 4 th ed Chapter 21 Copyright © The McGraw-Hill.
Glucose Metabolism: Gluconeogenesis By Reem M. Sallam, MD, PhD Assistant Prof., Clinical Chemistry Unit, Pathology Dept., College of Medicine, KSU.
Cellular Biochemistry and metabolism 2 Lecturer of Biochemistry
Coordinated regulation of glycolysis/gluconeogenesis.
BIOC/DENT/PHCY 230 LECTURE 11. o glucose requirements:160g/day whole body (120g/day brain) o glucose reserves:190g glycogen 20g in body fluids o need.
Pyruvate Oxidation: Pyruvate Dehydrogenase and the TCA Cycle.
Storage Mechanisms and Control in Carbohydrate Metabolism Apr. 7, 2016 CHEM 281.
Cellular Respiration Chapter 9: The Process. Objectives Understand that cellular respiration is a series of coupled metabolic processes Describe the role.
MIA KUSMIATI Departemen BIOKIMIA FK UNISBA.  The stimulation of gluconeogenesis by high energy charge and high concentrations of citrate and acetyl-CoA.
Gluconeogenesis  is not a reversal of glycolysis  noncarbohydrate precursors of Glc, carbon skeleton  take place in liver, minor in kidney, brain, skeletal.
NS 315 Unit 4: Carbohydrate Metabolism
Dr. Ng’weina Francis Magitta, MD, PhD University of Dar es Salaam 2015
Gluconeo- genesis Carbohydrates provide a significant portion of human caloric intake.
Gluconeogenesis.
GLYCOGEN METABOLISM Glycogen: a highly branched polymer
GLUCONEOGENESIS Synthesis of glucose from noncarbohydrate precursors
Gluconeogenesis.
22.7 Gluconeogenesis: Glucose Synthesis
METABOLISM OF CARBOHYDRATES: SYNTHESIS AND DEGRADATION OF GLYCOGEN
Additional Pathways in Carbohydrate Metabolism
Other Pathways of Carbohydrate Metabolism
Lecture 12 Slides rh.
Presentation transcript:

Gluconeogenesis + Evaluations 4/23/2003

Overview of Glucose Metabolism

Gluconeogenesis Gluconeogenesis is the process whereby precursors such as lactate, pyruvate, glycerol, and amino acids are converted to glucose. Fasting requires all the glucose to be synthesized from these non-carbohydrate precursors. Most precursors must enter the Krebs cycle at some point to be converted to oxaloacetate. Oxaloacetate is the starting material for gluconeogenesis

Pyruvate is converted to oxaloacetate before being changed to Phosphoenolpyruvate 1. Pyruvate carboxylase catalyses the ATP-driven formation of oxaloacetate from pyruvate and CO 2 2. PEP carboxykinase (PEPCK) concerts oxaloacetate to PEP that uses GTP as a phosphorylating agent.

Pyruvate carboxylase requires biotin as a cofactor

Gluconeogenesis is not just the reverse of glycolysis Several steps are different so that control of one pathway does not inactivate the other. However many steps are the same. Three steps are different from glycolysis. 1 Pyruvate to PEP 2 Fructose 1,6- bisphosphate to Fructose-6- phosphate 3 Glucose-6-Phosphate to Glucose

Biotin is an essential nutrient There is hardly any deficiencies for biotin because it is abundant and bacteria in the large intestine also make it. However, deficiencies have been seen and are nearly always linked to the consumption of raw eggs. Raw eggs contain Avidin a protein that binds biotin with a K d = (that is one tight binding reaction!) It is thought that Avidin protects eggs from bacterial invasion by binding bioitin and killing bacteria.

PEP carboxykinase

Acetyl-CoA regulates pyruvate carboxylase Increases in oxaloacetate concentrations increase the activity of the Krebs cycle and acetyl-CoA is a allosteric activator of the carboxylase. However when ATP and NADH concentrations are high and the Krebs cycle is inhibited, oxaloacetate goes to glucose.

Transport between the mitochondria and the cytosol Generation of oxaloacetate occurs in the mito- chondria only, but, gluconeogenesis occurs in the cytosol. PEPCK is distributed between both compartments in humans, while in mice, it is only found in the cytosol. In rabbits, it is found in the mitochondria. Either PEP must be transported across the membranes or oxaloacetate has to be transported. PEP transport systems are seen in the mitochondria but oxaloacetate can not be trans- ported directly in or out of the mitochondria.

Hydrolytic reactions bypass PFK and Hexokinase The hydrolysis of fructose-1,6-phosphate and glucose-6- phosphate are separate enzymes from glycolysis. Glucose-6-phosphatase is only found in the liver and kidney. The liver is the primary organ for gluconeogenesis. Glucose + 2NAD + + 2ADP + 2Pi 2Pyruvate +2NADH + 4H + + 2ATP + 2H 2 O 2Pyruvate +2NADH + 4H + + 4ATP + 2GTP + 6H 2 O glucose + 2NAD + + 4ATP + 2GDP + 4Pi 2ATP + 2GTP + 4H 2 O 2ADP + 2GTP + 4Pi

Regulators of gluconeogenic enzyme activity Enzyme Allosteric Allosteric Enzyme Protein Inhibitors Activators Phosphorylation Synthesis PFK ATP, citrate AMP, F2-6P FBPase AMP, F2-6P PK AlanineF1-6P Inactivates Pyr. Carb.AcetylCoA PEPCK Glucogon PFK-2 Citrate AMP, F6P, Pi Inactivates FBPase-2 F6P Glycerol-3-P Activates

Fructose-6-phosphate PFK-2 F2,6Pase Fructose-2,6-bisPhosphate Fructose-1,6-bisPhosphate P P PFK-1FBPase (+) (-) cAMP-dependent protein kinase AMP (+) ATP (-) Citrate (-) AMP (-) AMP (+) F-6-P (+) citrate (-) F-6-P (-) Hormonal control of glycolysis and gluconeogenesis

The glyoxylate pathway Only plants have the ability to convert acetyl-CoA to Oxaloacetate directly without producing reducing equilivents of NADH. This is done in the glyoxyzome, separate from the mitochondria and allows a replenishment of oxaloacetate. Isocitrate lyase - cleaves isocitrate into succinate and glyoxylate. The succinate goes to the mitochondria Malate synthase makes malate from glyoxylate and Acetyl- CoA. The Oxaloacetate can go directly to carbohydrate synthesis.

Glycogen Storage Glycogen is a D-glucose polymer  (1  4) linkages  (1  6) linked branches every 8-14 residues

Glycogen Breakdown or Glycogenolysis Three steps –Glycogen phosphorylase Glycogen + Pi glycogen + G1P (n residues)(n-1 residues) –Glycogen debranching –Phosphofructomutase

Glycogen Phosphorylase Requires Pyridoxal-5’-phosphate PLP

Glycogen Debranching Enzyme

Phosphofructomutase

Glycogen Syntheisis

UDP-glucose Pyrophorylase

Glycogen Synthase