Chapter 14 (Part 1) Electron transport. Chemiosmotic Theory Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of.

Slides:



Advertisements
Similar presentations
CELLULAR RESPIRATION STATIONS Markley. STATION 1: OVERVIEW.
Advertisements

Chemiosmotic theory of oxidative phosphorylation
Overview of oxidative phosphorylation
Electron Transport Chain/Respiratory Chain Proton gradient formed Four large protein complexes Mitochondria localized Energetically favorable electron.
Energy Generation in Mitochondria and Chloroplasts
1. The inner mitochondrial membrane contains 5 separate enzyme complexes, called complex I, II, III, IV and V. Complex V catalyses ATP synthesis. a) Each.
Biochemistry 2/e - Garrett & Grisham Copyright © 1999 by Harcourt Brace & Company Chapter 21 Electron Transport and Oxidative Phosphorylation to accompany.
Electron Transport and Oxidative Phosphorylation It all reduces down to water.
Lecture 27 Exam on Friday Up to glyoxalate cycle.
P691 Only those with specific transporters can pass All pathways related to fuel oxidation except glycolysis N side.
Overview of Citric Acid Cycle The citric acid cycle operates under aerobic conditions only The two-carbon acetyl group in acetyl CoA is oxidized to CO.
Chapter 13 &14 Energy Generation in Mitochondria.
Oxidation of glucose and fatty acids to CO 2 Respiration involves the oxidation of glucose and other compounds to produce energy. C 6 H 12 O
Oxidative Phosphorylation. Definition It is the process whereby reducing equivalents produced during oxidative metabolism are used to reduce oxygen to.
Chapter 14 (Part 1) Electron transport. Standard reduction potentials of the major respiratory electron carriers.
OXIDATION PHOSPHORYLATION-1 BIOC DR. TISCHLER LECTURE 28.
Electron Carriers 24.3 Electron Transport Chapter 24 Metabolism and Energy Production.
The respiratory chain: a strategy to recover energy The mitochondrial electron transport chain functioning and control Oxidative phosphorylation Russian.
Electron transport chain-2. Introduction The primary function of the citric acid cycle was identified as the generation of NADH and FADH2 by the oxidation.
x C 3 2 x C 2 Cytosol Glucose pyruvate 2 x CO 2 4 x CO 2 glycolysis 1 x C 6 Mitochondrion pyruvate 3 CO 2 CAC 3.
FREE ENERGY – MOST USEFUL THERMODYNAMIC CONCEPT IN BIOCHEMISTRY
Lecture 28 –Quiz Friday on Beta-Oxidation of Fatty acids –Electron transport chain –Electron transport cofactors –ATPase.
Electron transport. Chemiosmotic Theory Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of proteins and coenzymes.
Bioenergetics and Oxidative Phosphorylation Bioenergetics : describes the transfer and utilization of energy in biological system. Electron Transport:
1 SURVEY OF BIOCHEMISTRY Electron Transport and Oxidative Phosphorylation.
Oxidative Phosphorylation & Chemiosmosis
AEROBIC METABOLISM II: ELECTRON TRANSPORT CHAIN Khadijah Hanim Abdul Rahman School of Bioprocess Eng, UniMAP Week 15: 17/12/2012.
Chapter 19 Oxidative Phosphorylation and Photophosphorylation.
ELECTRON TRANSPORT CHAIN
The Role of Electron Transport in Metabolism
Oxidative Phosphorylation and Electron Transport Chain(ETC)
INTRODUCTION During reactions involved in fatty acid oxidation and the TCA cycle, reducing equivalents (such as electrons) are derived from sequential.
Pyruvate Carboxylase Reversing the final steps.
ATP _ Universal Carrier of Free Energy _ Chemical _ Ionic Provides Energy for: _ Mechanical Work.
Electron Transport Chain and Oxidative Phosphorylation Dr. Sooad Al-Daihan Biochemistry department.
INTER 111: Graduate Biochemistry.  Define electron transport chain, oxidative phosphorylation, and coupling  Know the locations of the participants.
OXIDATIVE PHOSPHORYLATION 9/25/07. ATP _ Universal Carrier of Free Energy _ Chemical _ Ionic Provides Energy for: _ Mechanical Work.
Substrate and oxidative phosphorylation. Substrate-level phosphorylation is a type of chemical reaction that results in the formation and creation of.
OXIDATIVE PHOSPHORYLATION. Oxidative Phosphorylation  The process in which ATP is formed as a result of the transfer of electrons from NADH or FADH 2.
Electron Transport Chain (ETC) & Oxidative Phosphorylation COURSE TITLE: BIOCHEMISTRY 2 COURSE CODE: BCHT 202 PLACEMENT/YEAR/LEVEL: 2nd Year/Level 4, 2nd.
In the ETC, electrons pass through a series of protein complexes and e - carriers to O 2 Intermediate steps (instead of direct transfer to O 2 ) allow.
Aerobic respiration Mitochondrial structure and function –Visible under light microscope –Universal in aerobic eukaryotes –Have own DNA and ribosomes –Number.
Glucose metabolism Some ATP Big bonus: NADH, FADH2 → REDUCING POWER
Oxidative Phosphorylation What is it? Process in which ATP is formed as a result of the transfer of electrons from NADH or FADH 2 to O 2 via a series of.
Dr.S.Chakravarty, MD. Oxidation is defined as the removal of electrons and reduction as the gain of electrons. Oxidation is always accompanied by reduction.
At the end of the electron transport chain, oxygen receives the energy-spent electrons, resulting in the production of water. ½ O e- + 2 H+ → H 2.
Cellular Respiration: Harvesting Chemical Energy
The Electron-Transport Chain
Electron Transport Chain (Respiratory Chain) Dr. Sumbul Fatma 1 Lecture Respiratory Block.
Metabolic modes of energy generation Respiration – couple substrate oxidation to the ultimate reduction of an extrinsic chemical such as O 2, DMSO, etc.
Mitochondrial Electron Transport The cheetah, whose capacity for aerobic metabolism makes it one of the fastest animals.
Electron transport and Oxidative phosphorylation The final piece of the puzzle Take a deep breath and push on.
LEHNINGER PRINCIPLES OF BIOCHEMISTRY
Glycolysis, Pyruvate Oxidation and Kreb’s have produced very little ATP and some energy in the form of electron carriers Majority of ATP will come from.
Electron Transport Chain (Respiratory Chain)
ELECTRON TRANSPORT CHAIN. An electron transport chain (ETC) couples electron transfer between an electron donor (such as NADH ) and an electron acceptor.
23.2 Electron Transport and ATP
The respiratory chain and Oxidative phosphorylation
Oxidative Phosphorylation Via the Electron Transport Chain
Chapter 23 Metabolism and Energy Production
Energy Generation in Mitochondria and Chloroplasts
Cellular Respiration Part 2
Oxidative Phosphorylation Results from Cellular Respiration
Chapter 18 Metabolic Pathways and Energy Production
The respiratory chain and Oxidative phosphorylation
Cellular Respiration Part 2
It all reduces down to water.
Electron Transport Chain (Respiratory Chain)
Electron Transport Chain (Respiratory Chain)
Chemotrophic Energy Metabolism: Aerobic Respiration
Presentation transcript:

Chapter 14 (Part 1) Electron transport

Chemiosmotic Theory Electron Transport: Electrons carried by reduced coenzymes are passed through a chain of proteins and coenzymes to drive the generation of a proton gradient across the inner mitochondrial membrane Oxidative Phosphorylation: The proton gradient runs downhill to drive the synthesis of ATP Electron transport is coupled with oxidative phosphorylation It all happens in or at the inner mitochondrial membrane

Outer Membrane – Freely permeable to small molecules and ions. Contains porins with 10,000 dalton limit Inner membrane – Protein rich (4:1 protein:lipid). Impermeable. Contains ETR, ATP synthase, transporters. Cristae – Highly folded inner membrane structure. Increase surface area. Matrix- “cytosol” of the mitochondria. Protein rich (500 mg/ml) Contains TCA cycle enzymes, pyruvate dehydrogenase, fatty and amino acid oxidation pathway, DNA, ribosomes Intermembrane Space – composition similar to cytosol

Reduction Potentials High E o ' indicates a strong tendency to be reduced Crucial equation:  G o ' = -nF  E o '  E o ' = E o '(acceptor) - E o '(donor) NADH + ½ O 2 + H +  NAD + + H + + H 2 O NAD + + H + + 2e -  NADH E o’ = ½ O 2 + 2e - + 2H +  H 2 O E o’ =  G o ‘= -nF(E o '(O 2 ) - E o '(NADH))  G o ‘= -nF(0.82 –(-0.32)) = -nF(1.14) = -2(96.5 kJ mol -1 V -1 )(1.136) = -220 kJ mol -1

Electron Transport Four protein complexes in the inner mitochondrial membrane A lipid soluble coenzyme (UQ, CoQ) and a water soluble protein (cyt c) shuttle between protein complexes Electrons generally fall in energy through the chain - from complexes I and II to complex IV

Standard reduction potentials of the major respiratory electron carriers.

Complex I NADH-CoQ Reductase Electron transfer from NADH to CoQ More than 30 protein subunits - mass of 850 kD 1 st step is 2 e - transfer from NADH to FMN FMNH 2 converts 2 e - to 1 e - transfer Four H + transported out per 2 e- NADH + H + FMN Fe 2+ S CoQ NAD + FMNH 2 Fe 3+ SCoQH 2

Succinate FAD Fe 2+ S CoQ FumarateFADH 2 Fe 3+ SCoQH 2 Complex II Succinate-CoQ Reductase aka succinate dehydrogenase (from TCA cycle!) four subunits Two largest subunits contain 2 Fe-S proteins Other subunits involved in binding succinate dehydrogenase to membrane and passing e - to Ubiquinone FAD accepts 2 e - and then passes 1 e - at a time to Fe-S protein No protons pumped from this step

Q-Cycle Transfer from the 2 e - carrier ubiquinone (QH2) to Complex III must occur 1 e - at a time. Works by two single electron transfer steps taking advantage of the stable semiquinone intermediate Also allows for the pumping of 4 protons out of mitochondria at Complex III Myxothiazol (antifungal agent) inhibits electron transfer from UQH 2 and Complex III. UQ UQ.- UQH 2

Complex III CoQ-Cytochrome c Reductase CoQ passes electrons to cyt c (and pumps H + ) in a unique redox cycle known as the Q cycle Cytochromes, like Fe in Fe-S clusters, are one- electron transfer agents cyt c is a water-soluble electron carrier 4 protons pumped out of mitochondria (2 from UQH 2 ) CoQH 2 cyt b ox Fe 2+ S cyt c 1 ox cyt c red CoQcyt b red Fe 3+ S cyt c 1 red cyt c ox

cyt c red cyt a ox cyt a 3 red O2O2 cyt c ox cyt a red cyt a 3 ox 2 H 2 O Complex IV Cytochrome c Oxidase Electrons from cyt c are used in a four- electron reduction of O 2 to produce 2H 2 O Oxygen is thus the terminal acceptor of electrons in the electron transport pathway - the end! Cytochrome c oxidase utilizes 2 hemes (a and a 3 ) and 2 copper sites Complex IV also transports H + (2 protons)

Inhibitors of Oxidative Phosphorylation Rotenone inhibits Complex I - and helps natives of the Amazon rain forest catch fish! Cyanide, azide and CO inhibit Complex IV, binding tightly to the ferric form (Fe 3+ ) of a 3 Oligomycin and DCCD are ATP synthase inhibitors

Shuttling Electron Carriers into the Mitochondrion The inner mitochondrial membrane is impermeable to NADH. Electrons carried by NADH that are created in the cytoplasm (such as in glycolysis) must be shuttled into the mitochondrial matrix before they can enter the ETS

Glycerol phosphate shuttle

malate/aspartate shuttle system

Electron transport is coupled to oxidative phosphorylation

Uncouplers Uncouplers disrupt the tight coupling between electron transport and oxidative phosphorylation by dissipating the proton gradient Uncouplers are hydrophobic molecules with a dissociable proton They shuttle back and forth across the membrane, carrying protons to dissipate the gradient w/o oxidative-phosphorylation energy lost as heat Dinitrophenol once used as diet drug, people ran 107 o F temperatures