1 Calor02 Pasadena (USA) 25-29 March 2002Lino Miramonti - University and INFN Milano Borexino: A Real Time Liquid Scintillator Detector for Low Energy.

Slides:



Advertisements
Similar presentations
The SNO+ Experiment: Overview and Status
Advertisements

R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Riunione Settembre 2007 Gruppo 2 Inizio presa dati 2007: Auger, Borexino, Agile, Pamela Rivelatore on 2008: Gerda, Icarus, Opera,Warp, Glast, Antares,
2007 March 21stLAUNCH MPI, Heiderberg1 Solar Neutrino at KamLAND Sei Yoshida Reserch Center for Neutrino Science, Tohoku Univ. for the KamLAND.
First real time 7 Be solar detection in Borexino Davide D’Angelo INFN Sez. Milano On behalf of the Borexino Collaboration.
M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
Recent results from Borexino
M. Carson, University of Sheffield IDM 2004, University of Edinburgh Veto performance for a large xenon detector.
Prototype of the Daya Bay Neutrino Detector Wang Zhimin IHEP, Daya Bay.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
KamLand By Roy Lehn Omaha Roncalli. Means Kamioka Liquid scintillator Anti- Neutrino Detector.
Honolulu 16/Dec/2005 Marco G. Giammarchi, Infn Milano Geoneutrinos in Borexino Marco G. Giammarchi & Lino Miramonti Dip. di Fisica dell’Universita’ and.
Double Beta Decay With 20-ton Metal Loaded Scintillators A Detector for DUSEL? Frank Calaprice Princeton University Aldo Ianni LNGS.
ZEPLIN II Status & ZEPLIN IV Muzaffer Atac David Cline Youngho Seo Franco Sergiampietri Hanguo Wang ULCA ZonEd Proportional scintillation in LIquid Noble.
Getting the first 7 Be detection: scintillator purification, detector response and data analysis in Borexino Marco Pallavicini Università di Genova & INFN.
Lino MiramontiJune 9-14, 2003, Nara Japan 1st Yamada Symposium Neutrinos and Dark Matter in Nuclear Physics.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
Blacksburg - October 14, 2006 LENS - The Lattice Architecture Jeff Blackmon (ORNL) on behalf of LENS Collaboration 8% Indium-loaded liquid scintillator.
Emanuela Meroni Univ. & INFN Milano NO-VE April 15-18, 2008 Borexino and Solar Neutrinos Emanuela Meroni Università di Milano & INFN On behalf of the Borexino.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
THE FAST X-RAY MONITOR (FXM) BASED ON YAP:CE SCINTILLATOR (YTTRIUM ALUMINUM PEROVSKITE ACTIVATED BY CERIUM) FOR THE “CORONAS-PHOTON” SATELLITE PROJECT.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
A detector design for the Daya Bay reactor neutrino experiment Yifang Wang Institute of High Energy Physics, Beijing Jan. 18, 2004.
Moscow, 15/10/2005 Aldo Ianni, INFN LNGS 1 Borexino and status of the project Aldo Ianni INFN, Gran Sasso Laboratory on behalf of the Borexino collaboration.
Nuclear physics for geo-neutrino studies 1Neutrino Geoscience 2010 Gran Sasso National Laboratory - Italy October, 2010 Lino Miramonti Università.
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
Yasuhiro Kishimoto for KamLAND collaboration RCNS, Tohoku Univ. September 12, 2007 TAUP 2007 in Sendai.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
G. Testera (INFN Genoa- Italy ) on behalf of the Borexino collaboration Low energy solar neutrino signals in Borexino Kurchatov Inst. (Russia) Dubna JINR.
M. Misiaszek (Institute of Physics, Jagellonian U., Krakow) on behalf of the Borexino Collaboration Results from the Borexino experiment Kurchatov Inst.
CTF and low background facility at Gran Sasso A. Ianni a, M. Laubenstein a and Y. Suvorov a a INFN, Gran Sasso Laboratory, Assergi (AQ), Italy The Counting.
Bbbbb 1.Introduction to ET Enterprises Ltd 2.Brief History 3.Product Range 4.Main Applications 5.Recent Developments 6.Current and Past projects 7.Summary.
A. IanniIFAE, Catania Mar. 30, Solar neutrinos: present and future Aldo Ianni INFN, Gran Sasso Laboratory.
GEANT4 simulation of the Borexino solar neutrino experiment. Igor Machulin Moscow, Kurchatov Institute On behalf of the Borexino Collaboration Catania,
March 19, 2010Kara Keeter1 Ultra-Sensitive Immersion Tank MOTIVATION –WHOLE-BODY COUNTING –TARGET SENSITIVITIES TO – g/g U/Th, etc. –POLLING.
VIeme rencontres du Vietnam
CTF at Gran Sasso (overview of the hardware) Richard Ford (SNOLAB) (who has not been in the collaboration since 2004) March 19 th 2010.
Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.
Daya Bay Reactor Neutrino Experiment On behalf of the DayaBay collaboration Virginia Polytechnic Institute and State University Joseph ykHor YuenKeung,
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
Neutrino Oscillations at Super-Kamiokande Soo-Bong Kim (Seoul National University)
Vulcan08, 26-31May 2008 Barbara Caccianiga, INFN Milano The first real time detection of 7 Be solar neutrinos in Borexino Barbara Caccianiga INFN Milano.
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
A screening facility for next generation low-background experiments Tom Shutt Case Western Reserve University.
Current status of XMASS experiment 11 th International Workshop on Low Temperature Detectors (LTD-11) Takeda Hall, University of Tokyo, JAPAN 8/1, 2005.
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
June INPC20071 Study of 48 Ca double beta decay with CANDLES OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
1 Status and background considerations of XMASS experiment Yeongduk Kim Sejong University for the XMASS collaboration LRT2006 Oct. 3, 2006.
Results from Borexino Davide Franco CNRS-APC NOW 2012 September 9-16, 2012.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Radon and its Progeny A Pervasive Problem for Low Background Counting (with Lessons from Borexino and Biology) Frank Calaprice Princeton University March.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
Positronium intensity measurement preparation SNU Bongho Kim.
5/13/11 FCPA Mini-RetreatDarkSide - S.Pordes1 DarkSide 10 kg Prototype at Princeton Distillation Column for Depleted Argon at Fermilab DarkSide 50 at Gran.
Enter the DarkSide Stefano Davini University of Houston RICAP-13.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
Simulation for DayaBay Detectors
Muon and Neutron detector of KIMS experiment
Neutron backgrounds in KamLAND
Solar neutrino detection in Borexino
Neutral Particles.
On behalf of the GECAM group
Davide Franco for the Borexino Collaboration Milano University & INFN
Design Requirements for Jinping Underground Neutrino Experiment
Presentation transcript:

1 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Borexino: A Real Time Liquid Scintillator Detector for Low Energy Solar Neutrino Study Lino Miramonti Milan University & I.N.F.N  (7Be) ) = 862 keV

2 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano L aboratori N azionali G ran S asso ~ 3500 meters water equivalent Borexino

3 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano The Borexino conceptual design ν are detected via the: The signature of the ν event is the scintillation light produced by the recoil e - σ( ν e )  5σ( ν μ,τ )

4 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano E ν = 862 keV (monochromatic) Φ SSM = 4.8 · 10 9 ν s -1 cm 2 σ  cm 2 1 MeV) Recoil electron energy νeνe νxνx

5 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano

6 Calor02 Pasadena (USA) March 2002 Lino Miramonti - University and INFN Milano The Scintillator 300 tons of liquid scintillator PC + PPO (1,5 g/l)  = 0.88 g cm -3 n = Characteristics of the scintillator: High photon yield (  ph/MeV) Fast response (τ  3.6 ns) (τ  5.5 ns in large volumes) Good α/β discrimination High transparency Can be purified λ max  365 nm alpha gamma/beta Normalized emission spectra of pseudocumene (PC) and of the scintillator mixture (PC+PPO 1.5 g/l) Time decay distribution of the scintillator for emission excited by α or β-γ radiation Characteristics of the PMs: 8” Thorn EMI 9351 Efficiency = 26 % 420 nm) Transit time spread σ = 1 ns Peak/valley = 2.5 Dark noise = 1 kHz Gain = 10 7 Energy Resolution: FWHM  1 MeV Time Resolution:  10 1 MeV

7 Calor02 Pasadena (USA) March 2002 Lino Miramonti - University and INFN Milano Inner Vessel Outer Vessel PMTs on the Stainless Steel Sphere

8 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano for Φ ν = 4.8 · 10 9 cm -2 s -1 σ ~ cm 2 ~ 55 events per day in 100 tons of fiducial volume! (250 keV – 800 keV) Reducing the background! The background which could give signal in the so called “ν window” (250 keV – 800 keV) can be divided in two main classes: Internal background (scintillator itself) Mainly natural radioactivity External background (coming from outside the IV) Radioactivity from PMTs Radioactivity from the rock Muon induced background MaterialU & Th content Scintillator  g/g Nylon Vessel  g/g PC buffer  g/g Water buffer  g/g Radiopurity levels obtained by: For scintillator – water extraction, N 2 stripping, distillation and silica gel For water – reverse osmosis, deionization, N 2 bubbling and stripping Counting Test Facility The capability to reach the requested radiopurity levels has been proved by the Counting Test Facility (Borexino prototype) in 1997

9 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Borexino expected performances In non-oscillation frame Signal ~ 55 events per day (in 100 tons, keV ) Bkg ~ 15 events per day (in 100 tons, keV ) Oscillation frame Events/day (in 100 t, keV) SMA ~ 12 LMA ~ 31 LOW ~ 29 Vaccum ~ 23

10 Calor02 Pasadena (USA) March 2002Lino Miramonti - University and INFN Milano Present status of the detector The 92% of PMTs are installed. The PC procurement is in progress. Water filling: summer-fall Borexino will take data (background) during the filling of the detector. Borexino will take data (physics events) from the spring The 92% of PMTs are installed. The PC procurement is in progress. Water filling: summer-fall Borexino will take data (background) during the filling of the detector. Borexino will take data (physics events) from the spring 2003.