Cholesterol Synthesis

Slides:



Advertisements
Similar presentations
Pyruvate Dehydrogenase
Advertisements

Figure, Head group attachment Membrane phospholipids:
Fatty Acid Synthesis Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry II.
Lipid Biosynthesis C483 Spring Which of these is NOT a difference between fatty acid synthesis and beta oxidation? A)Synthesis requires an enzyme.
Cholesterol Metabolism
Cholesterol and Steroid Metabolism Dr. Nikhat Siddiqi1.
Cholesterol and Steroid Metabolism
12.3 The Citric Acid Cycle Oxidizes AcetylCoA Table 12.2.
Synthesis of Triglycerides
Chapter 16 (Part 4) Synthesis of Eicosanoids, Glycerolipids and Isoprenoids.
Cholesterol Absorption, Synthesis, & Metabolism I Chapter 34
Chapter 14 - Electron Transport and Oxidative Phosphorylation
Lipid Metabolism 2: Acetyl-CoA carboxylase, fatty acid synthase reaction, and regulation of fatty acid synthesis Bioc 460 Spring Lecture 36 (Miesfeld)
Lipid Metabolism 3: Cholesterol biosynthesis, lipoprotein metabolism, steroid and eicosanoid synthesis Bioc 460 Spring Lecture 37 (Miesfeld) Steroids.
ATP-dependent carboxylation provides energy input. The CO 2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation.
Cholesterol Synthesis Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry II.
Substrates for lipid synthesis Phosphatidate is a precursor of storage and membrane lipids Formed by the addition of two fatty acids to glycerol 3-phosphate.
Learning Objectives • Be able to describe a the key properties of a metabolic pathway. • Be able to describe the various modes of regulation of metabolic.
Cholesterol synthesis and breakdown Dr. Carolyn K. Suzuki 1.
Energy economy of the cells
Ketogenesis & Ketolysis
Chapter 21 Biosynthetic Pathways Chemistry 20. Catabolic reactions: Anabolic reactions:Biosynthetic reactions Complex molecules  Simple molecules + Energy.
Generation and Storage of Energy
Chapter 24 Biosynthetic Pathways Chemistry 203. Catabolic reactions: Anabolic reactions:Biosynthetic reactions Complex molecules  Simple molecules +
Carbohydrates, nucleotides, amino acids, now lipids Lipids exhibit diverse biological function –Energy storage –Biological membranes –Enzyme cofactors.
LIPID METABOLISM: CHOLESTEROL METABOLISM. Functions of Cholesterol a precursor of steroid hormones (progesterone, testosterone, estradiol, cortisol, etc.)
Metabolism of steroids Pavla Balínová. Cholesterol is a maternal molecule of all steroids in human body is a starting molecule for synthesis of bile acids.
CHOLESTEROL 10/02-03/07 I.LEARNING OBJECTIVES 1) To identify the structure of cholesterol 2) To outline the synthesis of cholesterol 3) To describe the.
Cholesterol Metabolism Cardiovascular Block. Overview Introduction Cholesterol structure Cholesteryl esters Cholesterol synthesis Rate limiting step Regulation.
Lipids: phospholipids, cholesterol, steroids Biochem I, lecture 5 Chapter (exclude sphingolipids, p ), 26.2, 26.4 (exclude pregnenolone.
Hydroxymethylglutaryl-coenzyme A (HMG-CoA) is the precursor for cholesterol synthesis. HMG-CoA is also an intermediate on the pathway for synthesis of.
Cholesterol Metabolism
Fatty Acid Oxidation.
Cholesterol and its transport Alice Skoumalová. Cholesterol - structure 27 carbons.
Cholesterol metabolism: INTRODUCTION  Cholesterol is a sterol, present in cell membrane, brain and lipoprotein  It is a precursor for all steroids 
ECDA SEPT LIPOGENESIS  Fatty acids are formed by the action of fatty acid synthase from acetyl-CoA and malonyl-CoA (a 3- carbon compound) precursors.
Frederick A. Bettelheim William H. Brown Mary K. Campbell Shawn O. Farrell William H. Brown Beloit College Chapter.
Sphingolipid metabolism Starts with palmitoyl-CoA and serine, which is reduced and undergoes a transacylation and desaturation to yield ceramide (containing.
Lipogenesis. Metabolism of cholesterol.
Lipid Homeostasis and Transport CH353 February 12, 2008.
Cholesterol metabolism Structure of cholesterol OH is polar part The ring is non polar part Cholesterol ester (CE) is completely non polar.
If fatty acid synthesis occurs in the cytosol, where does the acetyl-CoA come from? Acetyl-CoA (not from fatty acid oxidation) is generated in the mitochondria.
Figure, Head group attachment Membrane phospholipids:
Lipid Metabolism Chapter 29, Stryer Short Course.
Lipogenesis Fats not only obtained from the diet but also obtained from lipogenesis in the body. Lipogenesis means synthesis of neutral fats (TAG) from.
Synthesis of Eicosanoids, Glycerolipids and Isoprenoids
Citric acid cycle and respiratory chain Pavla Balínová.
2. The Citric Acid Cycle (CAC) Pyruvate CO The Citric Acid Cycle (CAC) The sequence of events: Step 1: C-C bond formation to make citrate Step 2:
Cholesterol Metabolism.  The chemical and biochemical aspects of cholesterol regarding structure, distribution and biological functions in human body.
Biosynthesis of Ketones & Cholesterols, Regulation of Lipid Metabolism.
CHOLESTEROL SYNTHESIS.
Biochemistry department
CHOLESTEROL BIOSYNTHESIS
Cholesterol and its transport
Cholesterol Metabolism
The Organic Chemistry of the Metabolic Pathways • Terpene Biosynthesis
Biosynthesis of Cholesterol
Cholesterol Dr. M. Jawad Hassan
Cholesterol Synthesis, Transport, & Excretion
Cholesterol synthesis
Chapter Twenty-One Lipid Metabolism.
Cholesterol and Steroid Metabolism
Chapter Twenty-One Lipid Metabolism.
Protein Sensors for Membrane Sterols
Biosynthesis of Membrane Lipids
Statins Molecular mechanisms of action SREBP feedback control
Cholesterol Metabolism
MSC ,PhD Clinical Biochemistry
Presentation transcript:

Cholesterol Synthesis

Hydroxymethylglutaryl-coenzyme A (HMG-CoA) is the precursor for cholesterol synthesis. HMG-CoA is an intermediate on the pathway for synthesis of ketone bodies from acetyl-CoA. The enzymes for ketone body production are located in the mitochondrial matrix. HMG-CoA destined for cholesterol synthesis is made by equivalent, but different, enzymes in the cytosol.

HMG-CoA is formed by condensation of acetyl-CoA & acetoacetyl-CoA, catalyzed by HMG-CoA Synthase. HMG-CoA Reductase then catalyzes production of mevalonate from HMG-CoA.

Mevalonate formation: The carboxyl of HMG that is in ester linkage to the CoA thiol is reduced to an aldehyde, and then to an alcohol, with NADPH serving as reductant in the 2-step reaction. Mevaldehyde is thought to be an active site intermediate, following the first reduction and release of CoA.

The HMG-CoA Reductase reaction, in which mevalonate is formed from HMG-CoA, is rate-limiting for cholesterol synthesis. This enzyme is highly regulated and the target of pharmaceutical intervention (to be discussed later). HMG-CoA Reductase has a cleavable membrane domain that links it to the ER. The isolated catalytic portion of the enzyme forms a tetramer, consisting of 2 dimers, each of which includes 2 active sites. The binding site for HMG-CoA in one monomer is adjacent to the binding site for NADPH in the other. Explore this structure with Chime.

Mevalonate is phosphorylated by 2 sequential Pi transfers from ATP, yielding the pyrophosphate derivative. ATP-dependent decarboxylation, with dehydration, yields isopentenyl pyrophosphate.

Isopentenyl pyrophosphate is the first of several compounds in the pathway that are referred to as isoprenoids, by reference to the compound isoprene.

Isopentenyl Pyrophosphate Isomerase interconverts isopentenyl pyrophosphate & dimethylallyl pyrophosphate. The mechanism involves deprotonation and protonation.

Condensation Reactions Prenyl Transferase catalyzes head-to-tail condensations: Dimethylallyl pyrophosphate & isopentenyl pyrophosphate react to form geranyl pyrophosphate. Condensation with another isopentenyl pyrophosphate yields farnesyl pyrophosphate. Each condensation reaction is thought to involve elimination of PPi to yield a reactive carbocation. Prenyl Transferase (Farnesyl Pyrophosphate Synthase) has been crystallized with the substrate geranyl pyrophosphate in the active site (Chime exercise).

Squalene Synthase: Head-to-head condensation of 2 farnesyl pyrophosphate, with reduction by NADPH, yields squalene.

Squaline epoxidase catalyzes oxidation of squalene to form 2,3-oxidosqualene. This mixed function oxidation requires NADPH as reductant & O2 as oxidant. One O atom is incorporated into substrate (as epoxide) & the other O is reduced to water.

Squalene Oxidocyclase catalyzes a series of cyclization reactions, initiated by donation of a proton to the epoxide. The product is the sterol lanosterol.

Conversion of lanosterol to cholesterol involves 19 reactions, catalyzed by enzymes in ER membranes. Additional modification of cholesterol yields various steroid hormones. Many of these reactions are mixed function oxidations, requiring O2 & NADPH.

In a mixed function oxidation, one O atom of O2 is incorporated into a substrate & the other O atom reduced to H2O. E.g., hydroxylation catalyzed by cyt P450. In a pathway associated with ER membranes, NADPH transfers 2e- to cyt P450 via a Reductase, which has FAD & FMN prosthetic groups. O2 binds to the reduced heme Fe of cyt P450, and hydroxylation is catalyzed.

The heme prosthetic group of cyt P450 has a cysteine S as axial ligand (X or Y). The other axial position, where O2 binds, may be open or have a bound H2O, that is displaced by O2 (Chime exercise). There are many variants of cytochrome P450. Some have broad substrate specificity. Some are in mitochondria. Others are associated with ER membranes. Substrates include steroids & non-polar xenobiotics (drugs & other foreign compounds). Detoxification involves reactions like hydroxylation that increase polarity, so compounds can be excreted by the kidneys.

Farnesyl pyrophosphate, an intermediate on the pathway for cholesterol synthesis, also serves as precursor for synthesis of various isoprenoids: dolichol (role in synthesis of oligosaccharide chains of glycoproteins) coenzyme Q (ubiquinone, role in electron transfer chain) prenylated proteins (geranylgeranyl & farnesyl groups anchor some proteins to membranes).

Regulation of Cholesterol Synthesis HMG-CoA Reductase, the rate-limiting step on the pathway for synthesis of cholesterol, is a major control point. Regulation relating to cellular uptake of cholesterol will be discussed in the next class. Short-term regulation: HMG-CoA Reductase is inhibited by phosphorylation, catalyzed by AMP-Dependent Protein Kinase. This kinase is active when cellular AMP is high, corresponding to when ATP is low. Thus, when cellular ATP is low, energy is not expended in synthesizing cholesterol.

Long-term regulation is by varied transcription and degradation of HMG-CoA Reductase and other enzymes of the pathway for synthesis of cholesterol. The level of of HMG-CoA Reductase is modulated by regulated proteolysis. Degradation of HMG-CoA Reductase is stimulated by oxidized derivatives of cholesterol, mevalonate, & farnesol (dephosphorylated farnesyl pyrophosphate). The membrane domain of HMG-CoA Reductase has a sterol-sensing domain that may have a role in activation of the enzyme’s degradation. Transcription factors called SREBPs (sterol regulatory element binding proteins), particularly SREBP-2, also respond to cell sterol levels.

When sterol levels are low, SREBPs are released by cleavage of precursor proteins in ER membranes. SREBPs translocate into the nucleus where they activate transcription of genes for HMG-CoA Reductase & other cholesterol synthesis enzymes. SCAP (SREBP cleavage-activating protein) has a sterol-sensing domain similar to that of HMG-CoA Reductase. SCAP transports the SREBP precursor to the golgi, where protease S1P cleaves it. A 2nd protease S2P then cleaves in the membrane domain to release the N-terminal SREBP.

Pharmaceutical Intervention Drugs used to inhibit cholesterol synthesis include competitive inhibitors of HMG-CoA Reductase. Examples include various "statin drugs" such as lovastatin (mevacor) and derivatives (e.g., zocor). A portion of each of these compounds is analogous in structure to mevalonate. In addition, it has been suggested that the ring structures of the statin drubs may associated with the NADPH binding site in the enzyme.