Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 25 Sept 2006.

Slides:



Advertisements
Similar presentations
24.6 Diffraction Huygen’s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line.
Advertisements

Chapter 23.
Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 18 Oct 2011.
Light Waves and Polarization Xavier Fernando Ryerson Communications Lab
Optical sources Lecture 5.
Interference and Diffraction
PHYS 1442 – Section 004 Lecture #21 Wednesday April 9, 2014 Dr. Andrew Brandt Ch 24 Wave Nature of Light Diffraction by a Single Slit or Disk Diffraction.
Chapter 2 Propagation of Laser Beams
Nonlinear Optics Lab. Hanyang Univ. Chapter 2. The Propagation of Rays and Beams 2.0 Introduction Propagation of Ray through optical element : Ray (transfer)
 Light can take the form of beams that comes as close
PH0101 Unit 2 Lecture 4 Wave guide Basic features
Chapter Fifteen: Radio-Wave Propagation
Chapter 31 Images.
Chapter 26 Geometrical Optics. Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror.
1 UCT PHY1025F: Geometric Optics Physics 1025F Geometric Optics Dr. Steve Peterson OPTICS.
Lecture 24 Physics 2102 Jonathan Dowling EM waves Geometrical optics.
8. Wave Reflection & Transmission
Light: Geometric Optics
Introduction to antennas
Chapter 34 The Wave Nature of Light; Interference
Nature of light Ray or geometrical optics Wave or physical optics Quantum theory: W p =hf.
Fiber Optics Defining Characteristics: Numerical Aperture Spectral Transmission Diameter.
Basic Detection Techniques Quasi-optics Wolfgang Wild Lecture on 03 Oct 2006.
Wave Optics. Wave Optics wave fronts (surfaces of constant action) are orthogonal to rays (a) spherical wave, (b) plane wave (c) dipole wave, (d) dipole.
Higher order laser modes in gravitational wave detectors
Electromagnetic Wave Theory
PHY2049 Summer 2011 The following clicker numbers are no longer going to be counted. They have not been registered Exam.
By Bhaskar Department of Physics K L University. Lecture 07 (25 Aug) Interference in Thin Films.
Chapter 32 Light: Reflection and Refraction
Diffraction vs. Interference
3: Interference, Diffraction and Polarization
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
Chapter 5 Jones Calculus and Its Application to Birefringent Optical Systems Lecture 1 Wave plates Wave plates (retardation plates) are optical elements.
1 Chapter 34 One of the most important uses of the basic laws governing light is the production of images. Images are critical to a variety of fields and.
The wave nature of light Interference Diffraction Polarization
Modern Optics IV-coherence Special topics course in IAMS Lecture speaker: Wang-Yau Cheng 2006/4.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker.
1 ECE 480 Wireless Systems Lecture 3 Propagation and Modulation of RF Waves.
Lecture 25 Diffraction of Light Diffraction Grating Polarization.
Optical Fiber Communications
Engineering Optics Understanding light? Reflection and refraction Geometric optics (
Chapter 24 Wave Optics. General Physics Review – waves T=1/f period, frequency T=1/f period, frequency v = f velocity, wavelength v = f velocity, wavelength.
WAVE OPTICS & LASER.
Interference in Thin Films, final
Electromagnetic Waves and Their Propagation Through the Atmosphere
Doc.: IEEE /0431r0 Submission April 2009 Alexander Maltsev, Intel CorporationSlide 1 Polarization Model for 60 GHz Date: Authors:
Class overview: Brief review of physical optics, wave propagation, interference, diffraction, and polarization Introduction to Integrated optics and integrated.
Lecture 26-1 Lens Equation ( < 0 )  True for thin lens and paraxial rays.  magnification m = h’/h = - q/p.
Electromagnetic Waves
Tue. Nov. 11, 2008Physics 208, Lecture 211 From last time… EM waves Inductors in circuits I? + -
1.Stable radiation source 2.Wavelength selector 3.Transparent sample holder: cells/curvettes made of suitable material (Table 7- 2) 4.Radiation detector.
Chapter 38 Diffraction Patterns and Polarization.
Announcements HW set 10 due this week; covers Ch (skip 24.8) and Office hours: Prof. Kumar’s Tea and Cookies 5-6 pm today My office hours.
Conditions for Interference
Nonlinear Optics Lab. Hanyang Univ. Chapter 6. Processes Resulting from the Intensity-Dependent Refractive Index - Optical phase conjugation - Self-focusing.
The law of reflection: The law of refraction: Image formation
Geometrical Optics.
Chapter 5 Jones Calculus and Its Application to Birefringent Optical Systems Lecture 1 Wave plates Wave plates (retardation plates) are optical elements.
Phys102 Lecture 26, 27, 28 Diffraction of Light Key Points Diffraction by a Single Slit Diffraction in the Double-Slit Experiment Limits of Resolution.
Geometrical Optics.
UNIT-3 ADVANCES IN METROLOGY
Design of Interferometer System
Lens Equation ( < 0 ).
Diffraction through a single slit
A. WAVE OPTICS B. GEOMETRIC OPTICS Light Rays
Chapter 5. Polarization 第五章 極化 亞洲大學 資訊工程學系碩士班 呂克明教授 二○○六年十月十六日
PHYS 408 Applied Optics (Lecture 18)
Mirrors Chapter
PH0101 Unit 2 Lecture 4 Wave guide Basic features
Presentation transcript:

Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 25 Sept 2006

Basic Detection Techniques – Submm receivers (Part 4)2 Outline What is quasi – optics (diffraction) What is quasi – optics (diffraction) Gaussian beam and its properties Gaussian beam and its properties What is far? (confocal distance), far field, radiation pattern What is far? (confocal distance), far field, radiation pattern Gaussian beam coupling Gaussian beam coupling Concept Concept Lens/elliptical mirror Lens/elliptical mirror Gaussian beam launching Gaussian beam launching Corrugated horn Corrugated horn Polarization elements Polarization elements Wire grid Wire grid Roof top Mirror Roof top Mirror Quasi-optical components and systems Quasi-optical components and systems

Basic Detection Techniques – Submm receivers (Part 4)3 A to B A (source) B (detector)

Basic Detection Techniques – Submm receivers (Part 4)4 A to B A (source) B (detector)

Basic Detection Techniques – Submm receivers (Part 4)5 A to B optical A (source) B (detector)

Basic Detection Techniques – Submm receivers (Part 4)6 A to B diffraction A (source) A (detector)

Basic Detection Techniques – Submm receivers (Part 4)7 Quasi - optics Lens Antenna Geometrical Optics RadioQuasi - optics Both, Lens and Antenna Simplification of physical optics

Basic Detection Techniques – Submm receivers (Part 4)8 What is “quasioptics” ? “Quasi-optics deals with the propagation of a beam of radiation that is reasonably well collimated but has relatively small dimensions (measured in wavelenghts) transverse to the axis of propagation.” While this may sound very restrictive, it actually applies to many practical situations, such a submillimeter and laser optics. Main difference to geometrical optics: Geometrical optics: λ  0, no diffraction Quasi-optics:finite λ, diffraction Quasi-optics was developed in 1960’s as a result of interest in laser resonators.

Basic Detection Techniques – Submm receivers (Part 4)9 Why quasi-optics is of interest Task: Propagate submm beams / signals in a suitable way Could use- Cables  high loss, narrow band - Waveguides  high loss, cut-off freq - Optics  lossless free-space, broad band broad band But: “Pure” (geometrical) optical systems would require components much larger than λ. In sub- /mm range diffraction is important, and quasi-optics handles this in a theorectical way.

Basic Detection Techniques – Submm receivers (Part 4)10 Gaussian beam - definition Most often quasi-optics deals with “Gaussian” beams, i.e. beams which have a Gaussian intensity distribution transverse to the propagation axis. Gaussian beams are of great practical importance: Represents fundamental mode TEM 00 Stays Gaussian passing optical elements Laser beams Submm beams Radio telescope illumination

Basic Detection Techniques – Submm receivers (Part 4)11 Gaussian beam – properties I A Gaussian beam begins as a perfect plane wave at waist but – due to its finite diameter – increases in diameter (diffraction) and changes into a wave with curved wave front. Beam waist

Basic Detection Techniques – Submm receivers (Part 4)12 Gaussian beam properties II Solution of Helmholtz equation In cylindrical coordinates Waist size Phase

Basic Detection Techniques – Submm receivers (Part 4)13 Gaussian beam – properties III Gaussian beam diameter (= the distance between 1/e points) varies along the propagation direction as withλ = free space wavelength z = distance from beam waist (“focus”) w 0 = beam waist radius Radius of phase front curvature is given by

Basic Detection Techniques – Submm receivers (Part 4)14 Gaussian beam propagation Beam waist with radius w o Beam profile variation of the fundamental Gaussian beam mode along the propagation direction z Beam diameter 2w at distance z

Basic Detection Techniques – Submm receivers (Part 4)15 Gaussian beam - phase front curvature Beam profile variation of the fundamental Gaussian beam mode along the propagation direction z Curvature of phase front Far field divergence angle

Basic Detection Techniques – Submm receivers (Part 4)16 Confocal (Rayleigh) distance Quasi-optics becomes geometrical Border between far and near field Waist Far field of ALMA Antenna 377 km

Basic Detection Techniques – Submm receivers (Part 4)17 Launching Gaussian beam from fiber

Basic Detection Techniques – Submm receivers (Part 4)18 Corrugated horn coupling principle

Basic Detection Techniques – Submm receivers (Part 4)19 Quasi-optical components – Feedhorn (cont’d) Often used in submm: Corrugated feedhorn 500 GHz horn Lorentz’ reciprocity theorem implies that antennas work equally well as transmitters or receivers, and specifically that an antenna’s radiation and receiving patterns are identical. Lorentz’ reciprocity theorem implies that antennas work equally well as transmitters or receivers, and specifically that an antenna’s radiation and receiving patterns are identical. This allows determining the characteristics of a receiving antenna by measuring its emission properties. This allows determining the characteristics of a receiving antenna by measuring its emission properties.

Basic Detection Techniques – Submm receivers (Part 4)20 Beam coupling, lens as example

Basic Detection Techniques – Submm receivers (Part 4)21 QO Lens with antireflection “coating” Refractive index for antireflection coating n AR = n 1/2, λ/4 thick Refractive index for antireflection coating n AR = n 1/2, λ/4 thick Optical lenses: special material with correct n AR Optical lenses: special material with correct n AR Submillimeter lenses: grooves of width d g « λ Submillimeter lenses: grooves of width d g « λ Effect of AR coating if height and width are chosen such that the “mixed” refractive index between air and material = n AR Effect of AR coating if height and width are chosen such that the “mixed” refractive index between air and material = n AR

Basic Detection Techniques – Submm receivers (Part 4)22 Elliptical mirror FP1 FP2 Rotation axis R1 R2

Basic Detection Techniques – Submm receivers (Part 4)23 Mirror chain

Basic Detection Techniques – Submm receivers (Part 4)24 Quasi-optical components - Mirrors Use of flat and curved mirrors Use of flat and curved mirrors Curved mirrors (elliptical, parabolic) for focusing Curved mirrors (elliptical, parabolic) for focusing Material: mostly machined metal (non-optical quality). Surface roughness ~few micron sufficient for submm Material: mostly machined metal (non-optical quality). Surface roughness ~few micron sufficient for submm

Basic Detection Techniques – Submm receivers (Part 4)25 Quasi-optical components - Grid For separating a beam into orthogonal polarizations For separating a beam into orthogonal polarizations For beam combining (reflection/transmission) of orthogonal polarizations For beam combining (reflection/transmission) of orthogonal polarizations Polarization parallel to wire is reflected, perpendicular to wire is transmitted Polarization parallel to wire is reflected, perpendicular to wire is transmitted Material: thins wires over a metal frame Material: thins wires over a metal frame Also used in more complicated setups Also used in more complicated setups

Basic Detection Techniques – Submm receivers (Part 4)26 Quasi-optical components – Quarter wave plate Quarter-wave plate: linear pol.  circular polarisation If linear pol. wave incident at 45 o Path 1: ½ reflected by grid Path 2: ½ transmitted by grid and reflected by mirror and reflected by mirror Path difference is ΔL = L1 + L2 = 2d cos θ Phase delay Φ = k ΔL = (4πλ/d) cos θ For linear  circular pol. we need ΔL = λ/4  Φ = π/2, i.e. D = λ / (8 cos θ)

Basic Detection Techniques – Submm receivers (Part 4)27 Polarization transfer, roof top mirror

Basic Detection Techniques – Submm receivers (Part 4)28 Quasi – optical components

Basic Detection Techniques – Submm receivers (Part 4)29 Quasi optical systems example

Basic Detection Techniques – Submm receivers (Part 4)30 Martin-Puplett (Polarizing) Interferometer Low-loss combination of two beams of different frequency and polarization into one beam of the same polarization Low-loss combination of two beams of different frequency and polarization into one beam of the same polarization Often used for LO and signal beam coupling Often used for LO and signal beam coupling Use of polarization rotation by roof top mirror: Use of polarization rotation by roof top mirror: Input beam reflected by grid Polarization rotated by 90 o through rooftop mirror Beam transmitted by grid

Basic Detection Techniques – Submm receivers (Part 4)31 Martin-Puplett Diplexer Consider two orthogonally polarized input beams: Signal and LO Consider two orthogonally polarized input beams: Signal and LO Central grid P2 at 45 o angle  both beams are split equally and recombined Central grid P2 at 45 o angle  both beams are split equally and recombined For proper pathlength difference setting in the diplexer, both beams leave at port 3 with the same polarization (and no loss) For proper pathlength difference setting in the diplexer, both beams leave at port 3 with the same polarization (and no loss)

Basic Detection Techniques – Submm receivers (Part 4)32 QO system characterization x y System to measure Test source or receiver Moves in x,y Beam pattern (PSF) measurements E(x,y) phase and amplitude for near field E 2 (x,y) for far field, in two planes By fitting Gaussian beam distribution one can locate waist position and waist size, relative to measurement XY system

Basic Detection Techniques – Submm receivers (Part 4)33 Beam pattern examples, ALMA main beam

Basic Detection Techniques – Submm receivers (Part 4)34 Alma beam – cross polarization

Basic Detection Techniques – Submm receivers (Part 4)35 HIFI FPU (Focal Plane Unit)

Basic Detection Techniques – Submm receivers (Part 4)36 Common Optics Assembly

Basic Detection Techniques – Submm receivers (Part 4)37 Common Optics Assembly

Basic Detection Techniques – Submm receivers (Part 4)38 Mixer Assembly Contains two Mixer Subassemblies (MSA) Accepts LO and signal in two polarizations

Basic Detection Techniques – Submm receivers (Part 4)39 Literature on Quasi-optics (examples) “Quasioptical Systems”, P.F. Goldsmith, IEEE Press 1998 “Quasioptical Systems”, P.F. Goldsmith, IEEE Press 1998 Excellent book for (sub-)mm optics “Beam and Fiber Optics”, J.A. Arnaud, Academic Press 1976 “Beam and Fiber Optics”, J.A. Arnaud, Academic Press 1976 “Light Transmission Optics”, D. Marcuse, Van Nostrand- Reinhold, 1975 “Light Transmission Optics”, D. Marcuse, Van Nostrand- Reinhold, 1975 “An Introduciton to Lasers and Masers”, A.E. Siegman, McGraw- Hill 1971 “An Introduciton to Lasers and Masers”, A.E. Siegman, McGraw- Hill 1971 Chapter 5 (by P.F. Goldsmith) in Infrared and Millimeter Waves, Vol. 6, ed. K.J. Button, Academic Press 1982 Chapter 5 (by P.F. Goldsmith) in Infrared and Millimeter Waves, Vol. 6, ed. K.J. Button, Academic Press 1982