SAM LGS-v1, Optics, 2205071 The Laser Box position on SOAR IR Nasmyth Optical Nasmyth At 67.5Deg from IR Nasmyth Note: Laser umbilical cord of 7m has been.

Slides:



Advertisements
Similar presentations
Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 18 Oct 2011.
Advertisements

30-meter cabin refurbishment for a large Field Of View: status of on-going study S.Leclercq 28/04/2008.
MCAO Laser Launch Telescope and Periscope Celine d’Orgeville and Jim Catone.
Light Waves and Polarization Xavier Fernando Ryerson Communications Lab
Lab 1 Paraxial Optics Lab in 106A. Look at paraxial optics rules Use a bi-convex singlet at 1:1 conjugates Do it double pass so can see image Lateral.
Page 1 Lecture 12 Part 1: Laser Guide Stars, continued Part 2: Control Systems Intro Claire Max Astro 289, UC Santa Cruz February 14, 2013.
Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 25 Sept 2006.
Cavity length alignement 1.Two alignement mirrors -> symmetric beam image 2.PZT sweeping with an amplitude = several FSR 3.Shift two plane mirrors (in.
19/12/06SAM_LGS_1, CTIO, Optics1 SOAR at Horizon Telescope Ring Section= x336mm Laser Box Width= mm.
Grab Bag Wave Vocabulary Mirrors Light, Mirror, and Lens Lenses
Keck I Cassegrain ADC: Preliminary Design Overview UCO/Lick Observatory 15 October 2003.
The Project Office Perspective Antonin Bouchez 1GMT AO Workshop, Canberra Nov
Laser Launch System for the LBT Richard Davies Sebastian Rabien Max Planck Institute for Extraterrestrial Physics  Approaches of other observatories 
The Design Improvement of TMT Laser Guide Star Facility Kai Wei Institute of Optics and Electronics (IOE),CAS 1 International Colloquium on Thirty-Meter.
Aug-Nov, 2008 IAG/USP (Keith Taylor) ‏ Instrumentation Concepts Ground-based Optical Telescopes Keith Taylor (IAG/USP) Aug-Nov, 2008 Aug-Sep, 2008 IAG-USP.
LGS WFS Design Status & Issues Dekany, Delacroix, & Velur Caltech Optical Observatories.
ASTRO 2233 Fall 2010 Adaptive Optics, Interferometry and Planet Detection Lecture 16 Thursday October 21, 2010.
PALM-3000 PALM-3000 Instrument Architecture Antonin Bouchez PALM-3000 Requirements Review November 12, 2007.
PALM-3000 P3K Stimulus Design Update Rick Burruss P3K Team Meeting #7 February 27, 2008.
WFS Preliminary design phase report I V. Velur, J. Bell, A. Moore, C. Neyman Design Meeting (Team meeting #10) Sept 17 th, 2007.
NGAO Alignment Plan See KAON 719 P. Wizinowich. 2 Introduction KAON 719 is intended to define & describe the alignments that will need to be performed.
Wide-field, triple spectrograph with R=5000 for a fast 22 m telescope Roger Angel, Steward Observatory 1 st draft, December 4, 2002 Summary This wide-field,
Basic Detection Techniques Quasi-optics Wolfgang Wild Lecture on 03 Oct 2006.
WBS 3.3 Laser Facility Jim Bell, Jason Chin, Erik Johansson, Chris Neyman, Viswa Velur Design Meeting (Team meeting #10) Sept 17 th, 2007.
Design Team Report: Laser Facility Chris Neyman Jim Bell, Erik Johansson, Jason Chin W. M. Keck Observatory Viswa Velur Caltech Optical Observatories Keck.
MICE Alignment and Support Structure Tony Jones and Yury Ivanyushenkov Engineering Department RAL.
The Gemini MCAO System (EPICS Meeting, SLAC, April 2005) 1 The Gemini MCAO System Andy Foster Observatory Sciences Ltd.
Tibor Agócs Purpose of the talk  Wide-field spectroscopy/imaging is the driver  MOS  IFU  NB/WB imager  Current FOV is 40 arcmin – it’s.
A Pyramid WFS For LBT AGW Unit S. Esposito, A. Riccardi, D. Ferruzzi, A. Tozzi, M. Accardo, M. Carbillet, C. Verinaud, L. Fini, A. Puglisi, P. Salinari.
ASTRI SST-2M The Prototype monolithic 1.8 m
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Alignment R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
SAM PDR1 SAM LGS Mechanical Design A. Montane, A. Tokovinin, H. Ochoa SAM LGS Preliminary Design Review September 2007, La Serena.
Diffraction: single slit How can we explain the pattern from light going through a single slit? w screen L x.
Optical Design Work for a Laser-Fiber Scanned
1 Kai Wei Institute of Optics and Electronics (IOE),CAS August 30,2010 The TMT Laser Guide Star Facility (LGSF)
MCAO Adaptive Optics Module Mechanical Design Eric James.
MCAO Adaptive Optics Module Subsystem Optical Designs R.A.Buchroeder.
B.Delabre November 2003ANGRA DOS REIS - BRAZIL ESO 2 nd GENERATION INSTRUMENTATION – OPTICAL DESIGNS ESO VLT SECOND GENERATION INSTRUMENTATION Optical.
Diffraction and Limits of Resolution. Diffraction through a circular aperture of diameter D Intensity Diameter D Image on Screen θ = 1.22 λ /D Because.
A visible-light AO system for the 4.2 m SOAR telescope A. Tokovinin, B. Gregory, H. E. Schwarz, V. Terebizh, S. Thomas.
1 FRIDA Engineering Status 17/05/07 Engineering Status May 17, 2007 F.J. Fuentes InFraRed Imager and Dissector for Adaptive Optics.
September 28, 2007LGS for SAM – PDR – Optics1 LGS for SAM Optical Design R.Tighe, A.Tokovinin. LGS for SAM Design Review September 2007, La Serena.
MCAO System Overview Brent Ellerbroek. MCAO May 24-25, 2001MCAO Preliminary Design Review2 Presentation Outline Primary subsystems and their characteristics.
Toby Shoobridge David Benham NERC Space Geodesy Facility Herstmonceux, UK
The AO system for the GTC -an update Nicholas Devaney, Dolores Bello, Bruno Femenía, Alejandro Villegas, Javier Castro Grantecan, Instituto de Astrofísica.
DL – IFU (Prieto/Taylor) Slicer: –25mas sampling … 0.9mm slices ~f/250 (assuming no anamorphism) Detector = 2k array of 18um pixels –Slit subtends 1-pixel.
OC, June 3, SAM – SOAR Adaptive Module Andrei Tokovinin Nicole van der Bliek.
The VLT Adaptive Optics Facility
SAM PDR1 S OAR Adaptive Module LGS LGSsystem Andrei Tokovinin SAM LGS Preliminary Design Review September 2007, La Serena.
ATLAS The LTAO module for the E-ELT Thierry Fusco ONERA / DOTA On behalf of the ATLAS consortium Advanced Tomography with Laser for AO systems.
Laser Printer and Photocopiers By Rahul Prasad 2007PH10615.
Optical principles of diffraction focussing, Preparing the way to space borne Fresnel imagers NiceSeptember 23-25, Fresnel Imagers Observatoire.
Plan in summer shutdown Magnet -SF1FF -Swap of QEA magnet - Multipole field of Final Doublet IP-BSM improvement.
Some Thoughts on Ground Layer Adaptive Optics & Adaptive Secondary Mirrors for Keck P. Wizinowich 9/15/14 1.
Pre-focal wave front correction and field stabilization for the E-ELT
Preliminary Foreoptics Design for FASOT of 2nd Generation L. Chang, X.M Cheng
The law of reflection: The law of refraction: Image formation
Overview Science drivers AO Infrastructure at WHT GLAS technicalities Current status of development GLAS: Ground-layer Laser Adaptive optics System.
ATF2 beam operation status Toshiyuki OKUGI, KEK The 9 th TB&SGC meeting KEK, 3-gokan Seminar Hall 2009/ 12/ 16.
IPBSM Operation 11th ATF2 Project Meeting Jan. 14, 2011 SLAC National Accelerator Laboratory Menlo Park, California Y. Yamaguchi, M.Oroku, Jacqueline Yan.
1 The law of reflection: The law of refraction: Snell’s Law Image formation.
25/05/2007POSIPOL FOUR MIRRORS Fabry Perot resonator at LAL-Orsay Y. Fedala With help of F. Zomer, R.Cizeron.
Sasha GilevichDrive Laser Meeting December Launch System Outline General Layout Incidence Angle Effect of the broad bandwidth.
40m Optical Systems & Sensing DRD, G R 1 40m Optical Systems and Sensing Design Requirements Document & Conceptual Design Michael Smith 10/18/01.
Prism Pairs for Elliptical Beams
Internal CDR meeting December 20th, 2005
UNIT-3 ADVANCES IN METROLOGY
Lab 1 Paraxial Optics Lab in 106A.
Blanco Optics Report September 2009 R.Tighe Sept 07,2009 Sept 07, 2009
The M2 parameter in space ---beam quality factor
Presentation transcript:

SAM LGS-v1, Optics, The Laser Box position on SOAR IR Nasmyth Optical Nasmyth At 67.5Deg from IR Nasmyth Note: Laser umbilical cord of 7m has been tested. It can be laid out along the elevation ring passing directly to the cable ladder on the Nasmyth bearing and under the IR Nasmyth platform (tb/re-checked by SOAR team).

SAM LGS-v1, Optics, The LGS system M6 S-B-C B-E LaserLaser Laser Box: Laser: JDSU Q301-HD B-E: Special Optics x-351 CA-in=10mm,out=30mm, $2450. S-B-C: Special Optics UV-25 CA=25mm, $4150. Launch Telescope M1: R=1000mm, C= ,  =300mm. M2: R=30mm, C=0,  =9mm. M3 M1 (pupil) M2 M6 M5 M4 M3 Beam Propagation: Laser-line (broad band?) Mirrors Diameter=30mm, R~99%. 22.5deg

SAM LGS-v1, Optics, The Laser beam and Spot Characteristics Laser Beam Quality: M²<1.2  TEM00 purity better than 90% Waist (TEM00)=0.13mm B-E magnification = 4x, places parallel beam waist =4mm on LLTM2. LLT magnification = 33.32x places waist image = 39.4mm at 10km. Mixed Mode results for M2 = : Sur Size Waist Position Radius Divergence Rayleigh LLTm E E E E E E+004 LGS IMA E E E E E E+006 Note: B-E of 8x degrades LGS IQ (though still diffraction limited) but has the advantage of lower energy density on beam propagation mirrors.

SAM LGS-v1, Optics, Polarization Strategy Laser Linear  /4  Nasmyth Circular  /4  Linear WFS module Expected Residual Ellipticity: de-phase in SAM common path (tb/measured). p=  /2

SAM LGS-v1, Optics, LGS delivery System Tolerances LGS delivery system Tolerances Surface ShapeDisplacement Tilt ComponentConicRadius Max.  rMax.  (mm) (Deg) B-E m m m m LLTm LLTm11.08E LLT Max.  Z (tolerance on m1-m2 distance) = 7.25um

SAM LGS-v1, Optics, mm 1.3min SOAR flexure: LLT Tilt and Decenter (the effect on image shift and quality) 2.3Arcsec

SAM LGS-v1, Optics, Displacement and Tilt correction Input beam angle= Deg; corrects +2.3mm of LLT displacement. LLT M1 tilt angle=-0.894Arcsec; corrects 2.3Arcsec of image shift ”=2.167um actuator push-pull Conclusion: M6 and M4 motorized tip-tilt for easier alignment. Beam Active control: 4 diodes at the edge of LLTM1 close loop on M4.

SAM LGS-v1, Optics, To Do List Define the beam transfer Mirrors now!. The Alignment Plan and alignment tools. Finish the Laser Box design (beam quality control and alignment gadgets). The Optical Component List for PO. The Documentation for PDR.