Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen”

Slides:



Advertisements
Similar presentations
H-mode characterization for dominant ECR heating and comparison to dominant NBI or ICR heating F. Sommer PhD thesis advisor: Dr. Jörg Stober Academic advisor:
Advertisements

TEC Trilateral Euregio Cluster Institut für PlasmaphysikAssoziation EURATOM-Forschungszentrum Jülich IEA Large Tokamak IA Workshop on Edge Transport in.
Rijnhuizen colloquium 18 January 2001 E. Westerhof, FOM-Instituut voor Plasmafysica‘ Rijnhuizen’ Control of Neoclassical Tearing Modes E. Westerhof FOM-Instituut.
Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 18 Oct 2011.
Soft X-ray Self-Seeding
1 16th International Toki Conference Advanced Imaging and Plasma Diagnostics P5-14 Ceratopia Toki, Gifu, JAPAN December 5-8, 2006 Design of the 48, 57.
Basic Detection Techniques Quasi-Optical techniques Andrey Baryshev Lecture on 25 Sept 2006.
Numerical Simulations of Modulated Electron Cyclotron Heating Experiments E. Min 1), A. Thyagaraja 2), P.J. Knight 2), G.M.D. Hogeweij 1), P. Mantica 3)
George Sips ITPA, active control, 14 July Real-time Control ( and development of control systems ) at ASDEX Upgrade George Sips Max-Planck-Institut.
ELECTRON CYCLOTRON SYSTEM FOR KSTAR US-Korea Workshop Opportunities for Expanded Fusion Science and Technology Collaborations with the KSTAR Project Presented.
48th Annual Meeting of the Division of Plasma Physics, October 30 – November 3, 2006, Philadelphia, Pennsylvania Waveguide Cut c ab =0.99 w/a = 0.64 Gyrotron.
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM, Trilateral Euregio Cluster Feedback controlled ECRH power deposition for control of.
Association Euratom-FOM Trilateral Euregio Cluster 1 M.R. de Baar, Workshop Control for Nuclear Fusion, the Netherlands, In the control room:
Fundamental X-mode Electron Cyclotron Current Drive using Remote-Steering Symmetric Direction Antenna at Larger Steering Angles H. Idei 1, K. Hanada 1,
Institute for Plasma Research MURI 99 Frequency Doubling Harmonic Gyro-TWT’s (development and experimental studies) We will complete the optimization of.
Basic Detection Techniques Quasi-optics Wolfgang Wild Lecture on 03 Oct 2006.
By C. P. Moeller General Atomics, San Diego, California , USA RF Launchers That Survive Presented at the Renew theme III workshop at UCLA, March.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
1 Electron Bernstein Wave Research and Plans Gary Taylor Presentation to the 16th NSTX Program Advisory Committee September 9, 2004.
Fast imaging of global eigenmodes in the H-1 heliac ABSTRACT We report a study of coherent plasma instabilities in the H-1 plasma using a synchronous gated.
1 ST workshop 2008 Conception of LHCD Experiments on the Spherical Tokamak Globus-M O.N. Shcherbinin, V.V. Dyachenko, M.A. Irzak, S.A. Khitrov A.F.Ioffe.
Collective Thomson Scattering Diagnostics of Confined Fast Ions Paul Woskov 1, S. B. Korsholm 1,2, H. Bindslev 2, J. Egedal 1, F.Leipold 2, F. Meo 2, P.
ECRF Heating on CS Reactors T.K. Mau UC-San Diego With input from L.P. Ku (PPPL), J.F. Lyon (ORNL), X.R. Wang (UCSD) ARIES Project Meeting May 6-7, 2003.
Fast and Efficient Synthesis of Multimode Waveguide Components D.I.Sobolev, G.G. Denisov, A.P. Gashturi Institute of Applied Physics / GYCOM, Nizhny Novgorod.
1 XP720: EBW Emission in H-Mode Plasmas S.J. Diem Presented at the 2007 NSTX Results Review July 23-24, 2007.
Edge ECE measurements with the AUG CTS receiver and the effects of ELMs during H-mode Morten Stejner.
PROGRESS IN IN THE PROJECT OF THE HIGH FIELD SIDE REFLECTOMETRY SYSTEM FOR THE MAIN PLASMA IN ITER V. A. Vershkov, D. A. Shelukhin, A. O. Urazbaev,
17th International Stellarator / Heliotron Workshop Princeton, USA Overdense Plasma Operation in WEGA Stellarator Matthias Otte, H.P. Laqua, S. Marsen,
EC Radiation Transport in Fusion Reactor- Grade Tokamaks: Parameterization of Power Loss Density Profile, Non-Thermal Profile Effects under ECCD/ECRH conditions.
Review and Update of ITER ECE System M.E. Austin, U. Texas (DIII-D) R.F. Ellis, U. Maryland (DIII-D ) A.E. Hubbard, MIT (C Mod) P.E. Phillips, U. Texas.
Clustered Surface RF Production Scheme Chris Adolphsen Chris Nantista SLAC.
Current Drive for FIRE AT-Mode T.K. Mau University of California, San Diego Workshop on Physics Issues for FIRE May 1-3, 2000 Princeton Plasma Physics.
Self-consistency of pressure profiles in tokamaks Yu.N. Dnestrovskij 1, K.A. Razumova 1, A.J.H. Donne 2, G.M.D. Hogeweij 2, V.F. Andreev 1, I.S. Bel’bas.
Photo-thermal Deflection Spectroscopy George Noid LIGO SURF Student.
Fyzika tokamaků1: Úvod, opakování1 Tokamak Physics Jan Mlynář 8. Heating and current drive Neutral beam heating and current drive,... to be continued.
RF simulation at ASIPP Bojiang DING Institute of Plasma Physics, Chinese Academy of Sciences Workshop on ITER Simulation, Beijing, May 15-19, 2006 ASIPP.
1 KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institute for Pulsed Power.
MULTI-MODE GENERATOR FOR THE COLD TEST OF BROADBAND QUASI-OPTICAL GYROTRON MODE CONVERTERS D. Wagner 1, M. Thumm 2, G. Gantenbein 2, J. Flamm 2, J. Neilson.
FOM - Institute for Plasma Physics Rijnhuizen Association Euratom-FOM Diagnostics and Control for Burning Plasmas Discussion All of you.
MAST V.Shevchenko et al, ISTW 2006, October 2006, Chengdu, China EBW Experiments on MAST V. Shevchenko 1, G. Cunningham 1, A. Gurchenko 2, E. Gusakov.
FOM-Institute for Plasma Physics Rijnhuizen Association Euratom-FOM TP-3.2: Determine transport dependence on T i /T e ratio in L-mode plasma Roger Jaspers.
Emanuele Poli, 17 th Joint Workshop on ECE and ECRH Deurne, May 7-10, 2012 Assessment of ECCD-Assisted Operation in DEMO Emanuele Poli 1, Emiliano Fable.
S. Coda, MHD workshop, PPPL, 22 Nov Advances in sawtooth control for NTM prevention in JET S. Coda 1, L.-G. Eriksson 2, J. Graves 1, R. Koslowski.
Ph.D. Candidate: Yunlei Li Advisor: Jin Liu 9/10/03
DIFFER is part ofand Modelling of ECCD applied for NTM stabilization E. Westerhof FOM Institute DIFFER Dutch Institute for Fundamental Energy Research.
On the Turbulence Spectra of Electron Magnetohydrodynamics E. Westerhof, B.N. Kuvshinov, V.P. Lakhin 1, S.S. Moiseev *, T.J. Schep FOM-Instituut voor Plasmafysica.
RFX workshop / /Valentin Igochine Page 1 Control of MHD instabilities. Similarities and differences between tokamak and RFP V. Igochine, T. Bolzonella,
TEC Trilateral Euregio Cluster Institut für PlasmaphysikAssoziation EURATOM-Forschungszentrum Jülich 21st IAEA Fusion Energy Conference, October.
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
Numerical and experimental study of the mode tuning technique effects. Application to the cavity ring-down spectroscopy. J. Remy, G.M.W. Kroesen, W.W.
Active Control of Neoclassical Tearing Modes toward Stationary High-Beta Plasmas in JT-60U A. Isayama 1), N. Oyama 1), H. Urano 1), T. Suzuki 1), M. Takechi.
47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado ECE spectrum of HSX plasma at 0.5 T K.M.Likin, H.J.Lu, D.T.Anderson,
47th Annual Meeting of the Division of Plasma Physics, October 24-28, 2005, Denver, Colorado 1 Tesla Operation of the HSX Stellarator Simon Anderson, A.Almagri,
1) For equivalent ECRH power, off-axis heating results in lower stored energy and lower core temperature 2) Plasma flow is significantly reduced with off-axis.
5.4 Stored Energy Crashes  Diamagnetic loop shows the plasma energy crashes at low plasma density  ECE signals are in phase with the energy crashes 
The VIRGO detection system
1 NSTX Electron Bernstein Wave Emission Measurements Gary Taylor NSTX Results Review September 20-21, 2004.
Plasma Turbulence in the HSX Stellarator Experiment and Probes C. Lechte, W. Guttenfelder, K. Likin, J.N. Talmadge, D.T. Anderson HSX Plasma Laboratory,
Measurement of Electron Density Profile and Fluctuations on HSX C. Deng, D.L. Brower, W.X. Ding Electrical Engineering Department University of California,
1 E. Kolemen / IAEA / October 2012 Egemen Kolemen 1, A.S. Welander 2, R.J. La Haye 2, N.W. Eidietis 2, D.A. Humphreys 2, J. Lohr 2, V. Noraky 2, B.G. Penaflor.
Hard X-rays from Superthermal Electrons in the HSX Stellarator Preliminary Examination for Ali E. Abdou Student at the Department of Engineering Physics.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
= 2·10 18 m -3 T e (0) = 0.4 keV ECH and ECE on HSX Stellarator K.M.Likin, A.F.Almagri, D.T.Anderson, F.S.B.Anderson, C.Deng 1, C.W.Domier 2, R.W.Harvey.
O. Sauter “Robust” NTM Control: The AMN-system O. Sauter for the TCV and AUG teams Ecole Polytechnique Fédérale de Lausanne (EPFL) Centre de Recherches.
48th Annual Meeting of the Division of Plasma Physics, October 30 – November 3, 2006, Philadelphia, Pennsylvania c ab =0.99 w/a = 0.64 Gyrotron test mode.
48th Annual Meeting of the Division of Plasma Physics, October 30 – November 3, 2006, Philadelphia, Pennsylvania Energetic-Electron-Driven Alfvénic Modes.
1 21 Sep 2004M. Vervier Tests and matching analysis of a load resilient ICRH antenna on TEXTOR M. Vervier, P. Dumortier, S. Grine, A. Messiaen, G. Van.
Interferometer configurations for Gravitational Wave Detectors
The Proposed Holographic Noise Experiment
ECE Diagnostic on the HSX Stellarator
Presentation transcript:

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 1 ECRH Feedback Control in TEXTOR and ITER J.A. Hoekzema 2, E. Farshi 1, E. Westerhof 1, W.A. Bongers 1, M.F. Graswinckel 1, J.W. Oosterbeek 2, M.vd Pol 1 Partners in the Trilateral Euregio Cluster: 1 FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, PO Box 1207, 3430 BE Nieuwegein, The Netherlands 2 Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association,D Jülich, Germany Introduction on NTM feedback control ECE measurements for mode detection and localization Achievable localization of ECE and ECCD in TEXTOR and ITER

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 2 Intro on NTM feedback control ECRH feedback control system 1.Detect mode: MHD from pick-up coils / from ECE fluctuations.. 2.Localise mode (in real space): Via equilibrium reconstruction 3.Determine where to steer launcher to achieve appropriate deposition: Via ray/beam tracing Main problem in equilibrium reconstruction. This can be avoided by working in frequency space: 1.Detect mode in frequency space (ECE) 2.Detect deposition in frequency space (ECE response on modulation ECCD at different frequency than mode frequency) 3.Steer launcher Complications 1.Detection of the deposition may be affected by mode 2.Fast transport in MHD region 3.ECCD may destabilise MHD while detecting deposition

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 3 Same sightline ECE mode detection Using same sight line ECE with f ECE = f ECRH ±  f –At same f : ECRH deposition profile = ECE emission profile consequently,  dep,ECRH =  ECE –ECE at f ECRH ±  f comes from opposite sides of  dep,ECRH –Thus: localizing mode by  phase jump between the two ECE frequencies automatically matches  dep,ECRH to  mode Main problem: how to measure (backward propagating) low power ECE in ECRH beam line?

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 4 ECE power ECE system with 100 MHz bandwidth –ECE power expected 1.22  W for ITER (Q=10 Scen.2, 7.6 keV at q=3/2) 1.60  W for TEXTOR (~ 1 keV at q=3/2) –Noise level for state of the art ECE system ITER ( 20 kHz sampling) 4  W TEXTOR ( 100 kHz sampling) 8  W –Minimum required transmission for signal to noise ratio of 100 is 0.03 % for ITER and 0.5 % for TEXTOR

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 5 Receiver separates two frequencies from ECE signal ITER: gyrotron frequency 170 GHz, band-pass filters will be at 168 and 172 GHz Schematic ECE radiometer

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 6 Issues for technical realization of same sightline ECE Ways to couple out ECE radiation from ECRH beam line: –Grating to deflect a small fraction (MTP coupler) –Dielectric Screen to (partly) reflect ECE frequency and transmit ECRH frequency Removal relatively high power ECRH frequency from the detection system –Notch filters (e.g. dielectic screen as first stage) Complications from Remote Steering Launcher

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 7 MTP coupler Mirror with grating in MTP deflects 1% of forward and backward power downwards and upwards, resp. mirror grating MTP and polarizer © IAP,Nizhny Novgorod

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 8 Dielectric Screen Place screen in QO beam line to reflect ECE and transmit ECRH TEXTOR: f ECRH = 140 GHz, f ECE = 138, 142 GHz fused quartz 18.5 mm under 10 o

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 9 Dielectric Screen For limited power/pulse length screen can be placed directly in the high power beam Place screen where beam size is large Example TEXTOR beam line: largest waist 95 mm Resulting heating from 1 MW ECRH beam, 2 % abs.

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 10 Scheme for ITER grating Universal Polariser Forward Power Measurement Dielectric screen Mainly ECE Receiver gyrotron Waveguide notch filters Waveguide Reflected power + ECE Pin Switch

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 11 Bandwidth of RS Launcher in ITER 170 GHz 168 GHz172 GHz Steering angle 5 o Gauss (%) offset axis (mm)-  4.7  4.7 offset waist (cm)-  5.4  5.4

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 12 Bandwidth of RS Launcher 170 GHz 168 GHz172 GHz Steering angle 10 o Gauss (%) offset axis (mm)-  9.4  9.4 offset waist (cm)-  5.3  5.3

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 13 ECE and ECCD Localization ITER Q = 10 Scenario 2: R = 6.2 m, B = 5.3 T, I = 15 MA –q=3/2 at  = 0.77 ; T q=3/2 = 7.7 keV; n q=3/2 = 1.0 × m  3 Upper Launcher ECRH system –170 GHz, 3  8 beams at 1 MW each –1 st harmonic O-mode –average launching point: R = mm, Z = mm –Gaussian wavebeam radius: 71 mm –Beam divergence: 2 o (phase front curvature 2.1 m)

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 14 ECE and ECCD Localization TORBEAM beam tracing calculation (ackn. E. Poli) –Injection angles:  =  35 o ;  = 55.2 o

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 15 ECE and ECCD Localization Deposition/Emission profiles from TORAY-FOM  =  20 o  = 61 o  =  20 o  = 52 o

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 16 Localisation vs poloidal injection angle in ITER  = -20 o

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 17 Localisation: the TEXTOR case R = 1.75 m; a = m; B < 2.8 T; I < 800 kA ECRH: 140 GHz, 800 kW; LFS mid plane injection Example 1: HFS resonance 2.20 T, 2 nd X-mode ECR

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 18 Localisation: the TEXTOR case ECRH: 140 GHz, 800 kW; LFS mid plane injection Focused beam waist (1 cm) near plasma centre Example 2: HFS resonance 2.55 T, 2 nd X-mode ECR

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 19 Localisation: the TEXTOR case Example 3: LFS resonance 2.86 T, 2 nd X-mode ECR

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 20 Controlled islands with DED in TEXTOR

Active Control of MHD Stability, Austin, 3-5 November 2003J.A. Hoekzema, FZ-Juelich / IPP Association EURATOM-FOM FOM-Instituut voor Plasmafysica “Rijnhuizen” 21 Conclusion and discussion Same sightline ECE proposed for NTM feedback –mode detection/localisation and launcher steering in single step Detection of backward ECE in ECRH beam line –MTP mirror grating with 1 % efficiency, acceptable for ITER and TEXTOR –consequences of remote steering to be assessed further –alternative for ITER: use of dedicated “spare launcher” –dielectric screen with 35 % efficiency, acceptable for TEXTOR –alternative for screen: Fabry Perot with two thin sheets Achievable ECRH and ECE localization –ITER upper launcher: possibly rather broad deposition (beam size vs steering range to be optimised) –TEXTOR: excellent localisation, HFS resonance optimal