Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23

Slides:



Advertisements
Similar presentations
Pendugaan Parameter Nilai Tengah Pertemuan 13 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Advertisements

Analisis Varians/Ragam Klasifikasi Dua Arah Pertemuan 18 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
1 1 Slide © 2003 South-Western /Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Pengujian Hipotesis Nilai Tengah Pertemuan 15 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Regresi dan Korelasi Linear Pertemuan 19
Uji Tanda dan Peringkat Bertanda Wilcoxon Pertemuan 25 Matakuliah: Statistika Psikologi Tahun: 2008.
Inference about the Difference Between the
1 1 Slide Mátgæði Kafli 11 í Newbold Snjólfur Ólafsson + Slides Prepared by John Loucks © 1999 ITP/South-Western College Publishing.
1 Pertemuan 15 Pendugaan Parameter Nilai Tengah Matakuliah: I0134 – Metode Statistika Tahun: 2007.
1 1 Slide © 2009 Econ-2030-Applied Statistics-Dr. Tadesse. Chapter 11: Comparisons Involving Proportions and a Test of Independence n Inferences About.
1 Pertemuan 07 Pendugaan Parameter Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 09 Pengujian Hipotesis Proporsi dan Data Katagorik Matakuliah: A0392 – Statistik Ekonomi Tahun: 2006.
1 Pertemuan 06 Sebaran Penarikan Contoh Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 09 Pengujian Hipotesis 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 13 Analisis Ragam (Varians) - 2 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
1 Pertemuan 10 Analisis Ragam (Varians) - 1 Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 Pertemuan 08 Pengujian Hipotesis 1 Matakuliah: I0272 – Statistik Probabilitas Tahun: 2005 Versi: Revisi.
Korelasi dan Regresi Linear Sederhana Pertemuan 25
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
Chapter 11a: Comparisons Involving Proportions and a Test of Independence Inference about the Difference between the Proportions of Two Populations Hypothesis.
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
Goodness of Fit Test for Proportions of Multinomial Population Chi-square distribution Hypotheses test/Goodness of fit test.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide IS 310 – Business Statistics IS 310 Business Statistics CSU Long Beach.
1 1 Slide © 2005 Thomson/South-Western Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial Population Goodness of.
1 Pertemuan 16 Pendugaan Parameter Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 1 Slide © 2006 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 In this case, each element of a population is assigned to one and only one of several classes or categories. Chapter 11 – Test of Independence - Hypothesis.
1 1 Slide Chapter 11 Comparisons Involving Proportions n Inference about the Difference Between the Proportions of Two Populations Proportions of Two Populations.
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1/71 Statistics Tests of Goodness of Fit and Independence.
Chapter Outline Goodness of Fit test Test of Independence.
Pendugaan Parameter Varians dan Rasio Varians Pertemuan 18 Matakuliah: I0134/Metode Statistika Tahun: 2007.
Aplikasi Sebaran Normal Pertemuan 12 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 3 月 23 日 第六週:配適度與獨立性檢定.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
1 Pertemuan 24 Uji Kebaikan Suai Matakuliah: I0134 – Metoda Statistika Tahun: 2005 Versi: Revisi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 12 Tests of Goodness of Fit and Independence n Goodness of Fit Test: A Multinomial.
1. State the null and alternative hypotheses. 2. Select a random sample and record observed frequency f i for the i th category ( k categories) Compute.
Distribusi Peubah Acak Khusus Pertemuan 08 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
Sebaran Normal dan Normal Baku Pertemuan 11 Matakuliah: L0104 / Statistika Psikologi Tahun : 2008.
1 Pertemuan 17 Pembandingan Dua Populasi-1 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 26 Metode Non Parametrik-2 Matakuliah: A0064 / Statistik Ekonomi Tahun: 2005 Versi: 1/1.
1 Pertemuan 19 Analisis Varians Klasifikasi Satu Arah Matakuliah: I Statistika Tahun: 2008 Versi: Revisi.
Rancangan Acak Lengkap ( Analisis Varians Klasifikasi Satu Arah) Pertemuan 16 Matakuliah: I0184 – Teori Statistika II Tahun: 2009.
PENGUJIAN HIPOTESIS 1 Pertemuan 9
Pertemuan 17 Analisis Varians Klasifikasi Satu Arah
Test of independence: Contingency Table
Chapter 11 – Test of Independence - Hypothesis Test for Proportions of a Multinomial Population In this case, each element of a population is assigned.
St. Edward’s University
Peubah Acak Diskrit Pertemuan 07
Pertemuan 01 Data dan Statistika
Pertemuan 11 Sebaran Peluang Hipergeometrik dan Geometrik
Pertemuan 22 Analisis Varians Untuk Regresi
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Pertemuan 17 Pengujian Hipotesis
Pertemuan 13 Pendugaan Parameter Nilai Tengah
Pertemuan 13 Sebaran Seragam dan Eksponensial
John Loucks St. Edward’s University . SLIDES . BY.
Statistics for Business and Economics (13e)
Econ 3790: Business and Economics Statistics
CHI SQUARE TEST OF INDEPENDENCE
Pertemuan 18 Pengujian Hipotesis Lanjutan
Chapter Outline Goodness of Fit test Test of Independence.
St. Edward’s University
Presentation transcript:

Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23 Matakuliah : Statistika Psikologi Tahun : 2008 Uji Kebaikan Suai (Uji Kecocokan) Pertemuan 23

Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa akan dapat menghasilkan simpulan dari hasil uji kenormalan suatu data. Bina Nusantara University

Outline Materi Statistik uji Khi-kuadrat Uji kenormalan Uji sebaran binomial Bina Nusantara University

Tests of Goodness of Fit and Independence Goodness of Fit Test: A Multinomial Population Tests of Independence: Contingency Tables Goodness of Fit Test: Poisson and Normal Distributions Bina Nusantara University

Goodness of Fit Test: A Multinomial Population 1. Set up the null and alternative hypotheses. 2. Select a random sample and record the observed frequency, fi , for each of the k categories. 3. Assuming H0 is true, compute the expected frequency, ei , in each category by multiplying the category probability by the sample size. continued Bina Nusantara University

Goodness of Fit Test: A Multinomial Population 4. Compute the value of the test statistic. 5. Reject H0 if (where  is the significance level and there are k - 1 degrees of freedom). Bina Nusantara University

Contoh Soal: Finger Lakes Homes Multinomial Distribution Goodness of Fit Test The number of homes sold of each model for 100 sales over the past two years is shown below. Model Colonial Ranch Split-Level A-Frame # Sold 30 20 35 15 Bina Nusantara University

Contoh Soal: Finger Lakes Homes Multinomial Distribution Goodness of Fit Test Notation pC = popul. proportion that purchase a colonial pR = popul. proportion that purchase a ranch pS = popul. proportion that purchase a split-level pA = popul. proportion that purchase an A-frame Hypotheses H0: pC = pR = pS = pA = .25 Ha: The population proportions are not pC = .25, pR = .25, pS = .25, and pA = .25 Bina Nusantara University

Contoh Soal: Finger Lakes Homes Multinomial Distribution Goodness of Fit Test Expected Frequencies e1 = .25(100) = 25 e2 = .25(100) = 25 e3 = .25(100) = 25 e4 = .25(100) = 25 Test Statistic = 1 + 1 + 4 + 4 = 10 Bina Nusantara University

Contoh Soal: Finger Lakes Homes Multinomial Distribution Goodness of Fit Test Rejection Rule With  = .05 and k - 1 = 4 - 1 = 3 degrees of freedom Do Not Reject H0 Reject H0 2 7.81 Bina Nusantara University

Contoh Soal: Finger Lakes Homes Multinomial Distribution Goodness of Fit Test Conclusion c2 = 10 > 7.81, so we reject the assumption there is no home style preference, at the .05 level of significance. Bina Nusantara University

Goodness of Fit Test: Poisson Distribution 1. Set up the null and alternative hypotheses. 2. Select a random sample and a. Record the observed frequency, fi , for each of the k values of the Poisson random variable. b. Compute the mean number of occurrences, μ. 3. Compute the expected frequency of occurrences, ei , for each value of the Poisson random variable. continued Bina Nusantara University

Goodness of Fit Test: Poisson Distribution 4. Compute the value of the test statistic. 5. Reject H0 if (where  is the significance level and there are k - 2 degrees of freedom). Bina Nusantara University

Contoh Soal: Troy Parking Garage Poisson Distribution Goodness of Fit Test In studying the need for an additional entrance to a city parking garage, a consultant has recommended an approach that is applicable only in situations where the number of cars entering during a specified time period follows a Poisson distribution. Bina Nusantara University

Contoh Soal: Troy Parking Garage Poisson Distribution Goodness of Fit Test A random sample of 100 one-minute time intervals resulted in the customer arrivals listed below. A statistical test must be conducted to see if the assumption of a Poisson distribution is reasonable. # Arrivals 0 1 2 3 4 5 6 7 8 9 10 11 12 Frequency 0 1 4 10 14 20 12 12 9 8 6 3 1 Bina Nusantara University

Contoh Soal: Troy Parking Garage Poisson Distribution Goodness of Fit Test Hypotheses H0: Number of cars entering the garage during a one-minute interval is Poisson distributed. Ha: Number of cars entering the garage during a one-minute interval is not Poisson distributed Bina Nusantara University

Contoh Soal: Troy Parking Garage Poisson Distribution Goodness of Fit Test Estimate of Poisson Probability Function otal Arrivals = 0(0) + 1(1) + 2(4) + . . . + 12(1) = 600 Total Time Periods = 100 Estimate of  = 600/100 = 6 Hence, Bina Nusantara University

Contoh Soal: Troy Parking Garage Poisson Distribution Goodness of Fit Test Expected Frequencies x f (x ) xf (x ) x f (x ) xf (x ) 0 .0025 .25 7 .1389 13.89 1 .0149 1.49 8 .1041 10.41 2 .0446 4.46 9 .0694 6.94 3 .0892 8.92 10 .0417 4.17 4 .1339 13.39 11 .0227 2.27 5 .1620 16.20 12 .0155 1.55 6 .1606 16.06 Total 1.0000 100.00 Bina Nusantara University

Contoh Soal: Troy Parking Garage Poisson Distribution Goodness of Fit Test Observed and Expected Frequencies i fi ei fi - ei 0 or 1 or 2 5 6.20 -1.20 3 10 8.92 1.08 4 14 13.39 .61 5 20 16.20 3.80 6 12 16.06 -4.06 7 12 13.89 -1.89 8 9 10.41 -1.41 9 8 6.94 1.06 10 or more 10 7.99 2.01 Bina Nusantara University

Contoh Soal: Troy Parking Garage Poisson Distribution Goodness of Fit Test Test Statistic Rejection Rule With  = .05 and k - p - 1 = 9 - 1 - 1 = 7 d.f. (where k = number of categories and p = number of population parameters estimated), Reject H0 if 2 > 14.07 Conclusion We cannot reject H0. There’s no reason to doubt the assumption of a Poisson distribution. Bina Nusantara University

Goodness of Fit Test: Normal Distribution 4. Compute the value of the test statistic. 5. Reject H0 if (where  is the significance level and there are k - 3 degrees of freedom). Bina Nusantara University

Contoh Soal: Victor Computers Normal Distribution Goodness of Fit Test Victor Computers manufactures and sells a general purpose microcomputer. As part of a study to evaluate sales personnel, management wants to determine if the annual sales volume (number of units sold by a salesperson) follows a normal probability distribution. Bina Nusantara University

Contoh Soal: Victor Computers Normal Distribution Goodness of Fit Test A simple random sample of 30 of the salespeople was taken and their numbers of units sold are below. 33 43 44 45 52 52 56 58 63 64 64 65 66 68 70 72 73 73 74 75 83 84 85 86 91 92 94 98 102 105 (mean = 71, standard deviation = 18.54) Bina Nusantara University

Contoh Soal: Victor Computers Normal Distribution Goodness of Fit Test Hypotheses H0: The population of number of units sold has a normal distribution with mean 71 and standard deviation 18.54. Ha: The population of number of units sold does not have a normal distribution with mean 71 and standard deviation 18.54. Bina Nusantara University

Contoh Soal: Victor Computers Normal Distribution Goodness of Fit Test Interval Definition To satisfy the requirement of an expected frequency of at least 5 in each interval we will divide the normal distribution into 30/5 = 6 equal probability intervals. Bina Nusantara University

Contoh Soal: Victor Computers Normal Distribution Goodness of Fit Test Interval Definition Areas = 1.00/6 = .1667 53.02 71 88.98 = 71 + .97(18.54) 63.03 78.97 Bina Nusantara University

Contoh Soal: Victor Computers Normal Distribution Goodness of Fit Test Observed and Expected Frequencies i fi ei fi – ei Less than 53.02 6 5 1 53.02 to 63.03 3 5 -2 63.03 to 71.00 6 5 1 71.00 to 78.97 5 5 0 78.97 to 88.98 4 5 -1 More than 88.98 6 5 1 Total 30 30 Bina Nusantara University

Victor Computers Normal Distribution Goodness of Fit Test Test Statistic Rejection Rule With  = .05 and k - p - 1 = 6 - 2 - 1 = 3 d.f., Reject H0 if 2 > 7.81 Conclusion We cannot reject H0. There is little evidence to support rejecting the assumption the population is normally distributed with  = 71 and  = 18.54. Bina Nusantara University

Selamat Belajar Semoga Sukses. Bina Nusantara University