Regret Minimization and the Price of Total Anarchy Paper by A. Blum, M. Hajiaghayi, K. Ligett, A.Roth Presented by Michael Wunder.

Slides:



Advertisements
Similar presentations
Coordination Mechanisms for Unrelated Machine Scheduling Yossi Azar joint work with Kamal Jain Vahab Mirrokni.
Advertisements

6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
Inefficiency of equilibria, and potential games Computational game theory Spring 2008 Michal Feldman TexPoint fonts used in EMF. Read the TexPoint manual.
1 Robust Price of Anarchy Bounds via Smoothness Arguments Tim Roughgarden Stanford University.
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
Price Of Anarchy: Routing
Lecturer: Moni Naor Algorithmic Game Theory Uri Feige Robi Krauthgamer Moni Naor Lecture 8: Regret Minimization.
Effort Games and the Price of Myopia Michael Zuckerman Joint work with Yoram Bachrach and Jeff Rosenschein.
Algorithmic Game Theory and Scheduling Eric Angel, Evripidis Bampis, Fanny Pascual IBISC, University of Evry, France GOTha, 12/05/06, LIP 6.
Congestion Games with Player- Specific Payoff Functions Igal Milchtaich, Department of Mathematics, The Hebrew University of Jerusalem, 1993 Presentation.
Joint Strategy Fictitious Play Sherwin Doroudi. “Adapted” from J. R. Marden, G. Arslan, J. S. Shamma, “Joint strategy fictitious play with inertia for.
How Bad is Selfish Routing? By Tim Roughgarden Eva Tardos Presented by Alex Kogan.
Price of Total Anarchy June 2008 Slides by Israel Shalom Based on “Regret Minimization and the Price of Total Anarchy” By Avrim Blum, MohammadTaghi Hajiaghayi,
1 Smooth Games and Intrinsic Robustness Christodoulou and Koutsoupias, Roughgarden Slides stolen/modified from Tim Roughgarden TexPoint fonts used in EMF.
Algorithms and Economics of Networks Abraham Flaxman and Vahab Mirrokni, Microsoft Research.
Balázs Sziklai Selfish Routing in Non-cooperative Networks.
1 Algorithmic Game Theoretic Perspectives in Networking Dr. Liane Lewin-Eytan.
Mechanism Design without Money Lecture 4 1. Price of Anarchy simplest example G is given Route 1 unit from A to B, through AB,AXB OPT– route ½ on AB and.
Oblivious Routing for the L p -norm Matthias Englert Harald Räcke 1.
Computational Game Theory
Lecture 1 - Introduction 1.  Introduction to Game Theory  Basic Game Theory Examples  Strategic Games  More Game Theory Examples  Equilibrium  Mixed.
On the Topologies Formed by Selfish Peers Thomas Moscibroda Stefan Schmid Roger Wattenhofer IPTPS 2006 Santa Barbara, California, USA.
The price of anarchy of finite congestion games Kapelushnik Lior Based on the articles: “ The price of anarchy of finite congestion games ” by Christodoulou.
Beyond selfish routing: Network Formation Games. Network Formation Games NFGs model the various ways in which selfish agents might create/use networks.
1 On the price of anarchy and stability of correlated equilibria of linear congestion games By George Christodoulou Elias Koutsoupias Presented by Efrat.
The Price Of Stability for Network Design with Fair Cost Allocation Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, Tim Roughgarden.
Selfish Caching in Distributed Systems: A Game-Theoretic Analysis By Byung-Gon Chun et al. UC Berkeley PODC’04.
Bayesian Combinatorial Auctions Giorgos Christodoulou, Annamaria Kovacs, Michael Schapira האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.
A Scalable Network Resource Allocation Mechanism With Bounded Efficiency Loss IEEE Journal on Selected Areas in Communications, 2006 Johari, R., Tsitsiklis,
Load Balancing, Multicast routing, Price of Anarchy and Strong Equilibrium Computational game theory Spring 2008 Michal Feldman.
Potential games, Congestion games Computational game theory Spring 2010 Adapting slides by Michal Feldman TexPoint fonts used in EMF. Read the TexPoint.
1 Worst-Case Equilibria Elias Koutsoupias and Christos Papadimitriou Proceedings of the 16th Annual Symposium on Theoretical Aspects of Computer Science.
Nash Equilibria in Competitive Societies Eyal Rozenberg Roy Fox.
The Price of Uncertainty Maria-Florina Balcan Georgia Tech Avrim Blum Carnegie Mellon Yishay Mansour Tel-Aviv/Google ACM-EC 2009.
Algorithms and Economics of Networks Abraham Flaxman and Vahab Mirrokni, Microsoft Research.
Network Formation Games. Netwok Formation Games NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models:
How Bad is Selfish Routing A survey on existing models for selfish routing Professor John Lui, David Yau and Dah-Ming Qiu presented by Joe W.J. Jiang
Algorithms and Economics of Networks: Coordination Mechanisms Abraham Flaxman and Vahab Mirrokni, Microsoft Research.
Network Formation Games. Netwok Formation Games NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models:
Price of Anarchy Bounds Price of Anarchy Convergence Based on Slides by Amir Epstein and by Svetlana Olonetsky Modified/Corrupted by Michal Feldman and.
Inefficiency of equilibria, and potential games Computational game theory Spring 2008 Michal Feldman.
Constant Price of Anarchy in Network Creation Games via Public Service Advertising Presented by Sepehr Assadi Based on a paper by Erik D. Demaine and Morteza.
1 Issues on the border of economics and computation נושאים בגבול כלכלה וחישוב Congestion Games, Potential Games and Price of Anarchy Liad Blumrosen ©
1 Network Creation Game A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker, PODC 2003 (Part of the Slides are taken from Alex Fabrikant’s.
Efficiency Loss in a Network Resource Allocation Game Paper by: Ramesh Johari, John N. Tsitsiklis [ Informs] Presented by: Gayatree Ganu.
Introduction 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A.
Yossi Azar Tel Aviv University Joint work with Ilan Cohen Serving in the Dark 1.
1 Efficiency and Nash Equilibria in a Scrip System for P2P Networks Eric J. Friedman Joseph Y. Halpern Ian Kash.
Inoculation Strategies for Victims of Viruses and the Sum-of-Squares Partition Problem Kevin Chang Joint work with James Aspnes and Aleksandr Yampolskiy.
Approximating Market Equilibria Kamal Jain, Microsoft Research Mohammad Mahdian, MIT Amin Saberi, Georgia Tech.
Connections between Learning Theory, Game Theory, and Optimization Maria Florina (Nina) Balcan Lecture 14, October 7 th 2010.
Price of Anarchy Georgios Piliouras. Games (i.e. Multi-Body Interactions) Interacting entities Pursuing their own goals Lack of centralized control Prediction?
1 Intrinsic Robustness of the Price of Anarchy Tim Roughgarden Stanford University.
Network Congestion Games
Beyond selfish routing: Network Games. Network Games NGs model the various ways in which selfish agents strategically interact in using a network They.
Beyond selfish routing: Network Games. Network Games NGs model the various ways in which selfish users (i.e., players) strategically interact in using.
Improved Equilibria via Public Service Advertising Maria-Florina Balcan TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Vasilis Syrgkanis Cornell University
The Price of Routing Unsplittable Flow Yossi Azar Joint work with B. Awerbuch and A. Epstein.
Network Formation Games. NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models: Global Connection Game.
Network Formation Games. NFGs model distinct ways in which selfish agents might create and evaluate networks We’ll see two models: Global Connection Game.
Congestion games Computational game theory Fall 2010
Presented By Aaron Roth
Network Formation Games
Selfish Load Balancing
The Price of Routing Unsplittable Flow
Network Formation Games
Normal Form (Matrix) Games
The Price of Uncertainty:
Presentation transcript:

Regret Minimization and the Price of Total Anarchy Paper by A. Blum, M. Hajiaghayi, K. Ligett, A.Roth Presented by Michael Wunder

Nash Anarchy vs. Total Anarchy In a multiagent setting, want to find the ratio between the socially optimal value and the “selfish” agent outcome Traditionally, assumed to be Nash, where no agent has incentive to change Can also find the price of total anarchy, when selfish agents act repeatedly to minimize regret over previous actions

Why Regret Minimization? Finding Nash equilibria can be computationally difficult Not clear that agents would converge to it, or remain in one if there are several Regret minimization is realistic because there are efficient algorithms that minimize regret, it is locally computed, and players improve by lowering regret

Results comparing prices Shows how PoTA compares with PoA Four classes of games Hotelling Games Valid Games Atomic Linear Congestion Games Parallel Link Congestion Games

Preliminaries (maximization) A i : set of pure strategies for player i S i : set of mixed strategies for player i (distributions over A i ) Social Utility Function: Individual utility function: Strategy set if player i changes from s i to s’ i : ’

Preliminaries (cont.) Regret of Player i given action sets A: The difference between action taken and best available action over all timesteps Price of Total Anarchy: Ratio of social value of best strategies to the “regret minimizers” Socially Optimal Value:

Hotelling Games Problem: k sellers must set up a vendor stand on a graph to sell to n tourists, who buy from first seller along a path Strategy set A i = V S1 S2 T1

Hotelling Games cont. Social welfare at time t: To maximize fairness (and maximize the lowest player), split all vertices equally OPT = n/k Si T1

Hotelling Games cont. Claim: Price of anarchy = (2k-2)/k Proof: Consider alternate set: Some player h achieves: If player i plays same strategy as h, the expected payoff is: Therefore, Price of Anarchy

Hotelling with Total Anarchy The price of total anarchy is also (2k-2)/k Proof from symmetry: Let O t i be the set of plays at time t by players other than i Δ i t->u be the difference between expected payoff from choosing from O t i at time step u, and n/(2k-2) For all i, for all 1 u + Δ i u->t >=0 Imagine a (2k-2) player game where there is a time t and a time u player for each original player but i If player i replaces a random player, α i = n/(2k-2)

Hotelling Total Anarchy Proof If player i replaces a time t player, and all other time t players are removed, player i’s payoff only improves The expected payoff of player i from picking an action o t i uniformly at random from O t i and playing over all T rounds:

Generalized Hotelling Games The above proof does not use specifics of the game as described In general, PoTA is (2k-2)/k even in the presence of arbitrarily many Byzantine players making arbitrary decisions Regret-minimizing players may not converge to a Nash equilibrium, and play can cycle forever

Valid Games, Price of Anarchy Valid games are a broad class of games that includes a market sharing game, the facility location problem, and others. Example: Cable television market sharing Game is bipartite graph G = ((V,U),E). Each v in V is a player, each u in U is a market Markets have value and cost Players have budget Players may enter adjacent markets, and receive value of market divided by players in market

Valid Games Definition For a set function f, define the derivative of f at X in V in direction D in V-X to be f’D(X)=f(X U D)-f(X) A game is valid if: For X in A, γ i’(X)>= γ i’(A) for all i in V – A (submodularity) ( Vickrey )

Valid Games Price of Anarchy Vetta shows that for any Nash equilibrium strategy S, if γ is non- decreasing, γ(S) >= OPT/2 PoTA matches PoA While PoA does not hold with the addition of Byzantine players, PoTA does

Total Anarchy w/Byzantines Show by contradiction:

Total Anarchy w/Byzantines So there is a regret minimizing player i which violates the regret minimizing condition.

Atomic Congestion Games An atomic congestion game is a minimization game consisting of k players and a set of facilities V (a i over V i ) Each facility e has a latency function f e (l e ) Each player i has weight w i (unweighted w i = 1) Player i experiences cost: load on facility l e

Atomic Congestion Games Consider two types of social utility function: linear and makespan in parallel link networks Linear Edge Costs: Social utility:

Congestion Games PoA Price of Anarchy with unweighted players, sum social utility function, and linear cost functions is 2.5 (Christodoulou et al. 2005) Claim: Price of Total Anarchy is the same: “By assuming regret minimization, each player’s time average cost is no better than the cost of best action in hindsight. That is, no better than optimal strategy.”

Congestion Games: PoTA Proof: for all i: Summing over all players: After math:

Congestion Games: PoTA For atomic congestion games with unweighted players, sum social function, and polynomial latency functions of degree d, PoTA <= d d 1-o(1)

Parallel Link Congestion Game n identical links, k weighted players Each player pays sum of weights of jobs on link chosen Social cost is total weight of worst loaded link (makespan):

2 Parallel Links: PoTA For 2 links, Price of Total Anarchy matches Price of Anarchy = 3/2, but only in expectation

n Parallel Links: PoTA With n parallel links, PoTA is not the same as PoA PoTA with makespan utility and n links is Ω(n ½ ), versus O(log n/ log log n) for PoA Proof: with n links and n players, OPT = 1 We can construct a situation with negative regret but with maximum latency = Ω(n ½ )

n Parallel Links: PoTA Divide the players into groups of size n ½ /2 and rotate each group to take link 1 The rest distribute evenly on the remaining links Each player has average latency 5/4 – ½ (n -½ ) If a player plays a fixed link, the average latency is 2 – ½ (n -½ ) Therefore, players have negative regret but maximum latency = Ω(n ½ )

Conclusion Thank you!