1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.

Slides:



Advertisements
Similar presentations
Decision Theory.
Advertisements

To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 3-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Prepared by.
Chapter 3 Decision Analysis.
Decision Analysis Chapter 3
1 1 Slide © 2001 South-Western College Publishing/Thomson Learning Anderson Sweeney Williams Anderson Sweeney Williams Slides Prepared by JOHN LOUCKS QUANTITATIVE.
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2004 Thomson/South-Western Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature.
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Managerial Decision Modeling with Spreadsheets
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin An Introduction to Decision Making Chapter 20.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Dr. C. Lightner Fayetteville State University
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 7 Decision Analysis
Slides prepared by JOHN LOUCKS St. Edward’s University.
Chapter 4 Decision Analysis.
1 1 Slide Decision Analysis n Structuring the Decision Problem n Decision Making Without Probabilities n Decision Making with Probabilities n Expected.
Decision Analysis A method for determining optimal strategies when faced with several decision alternatives and an uncertain pattern of future events.
Part 3 Probabilistic Decision Models
Chapter 8 Decision Analysis MT 235.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Business 260: Managerial Decision Analysis
BA 555 Practical Business Analysis
Decision Making Under Uncertainty and Under Risk
Decision analysis: part 1 BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly from.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Decision Analysis Introduction Chapter 6. What kinds of problems ? Decision Alternatives (“what ifs”) are known States of Nature and their probabilities.
Operations Management Decision-Making Tools Module A
1 1 Slide © 2009 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 12 - SELF TEST 9 Chapter 12 - SELF TEST 18.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
Module 5 Part 2: Decision Theory
“ The one word that makes a good manager – decisiveness.”
An Introduction to Decision Theory (web only)
An Introduction to Decision Theory
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
Chapter 9 - Decision Analysis - Part I
Decision Analysis Mary Whiteside. Decision Analysis Definitions Actions – alternative choices for a course of action Actions – alternative choices for.
Copyright © 2009 Cengage Learning 22.1 Chapter 22 Decision Analysis.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Decision Analysis.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Example We want to determine the best real estate investment project given the following table of payoffs for three possible interest rate scenarios. Interest.
Decision Analysis Anderson, Sweeney and Williams Chapter 4 Read: Sections 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and appendix 4.1.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis.
Chapter 19 Statistical Decision Theory ©. Framework for a Decision Problem action i.Decision maker has available K possible courses of action : a 1, a.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
DECISION THEORY & DECISION TREE
Chapter Twenty McGraw-Hill/Irwin
Chapter 19 Decision Making
John Loucks St. Edward’s University . SLIDES . BY.
MNG221- Management Science –
Chapter 13 Decision Analysis
Statistical Decision Theory
Presentation transcript:

1 1 Slide Decision Analysis Professor Ahmadi

2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without Probabilities n Decision Making with Probabilities n Expected Value of Perfect Information

3 3 Slide Structuring the Decision Problem n A decision problem is characterized by decision alternatives, states of nature, and resulting payoffs. n The decision alternatives are the different possible strategies the decision maker can employ. n The states of nature refer to future events, not under the control of the decision maker, which may occur. States of nature should be defined so that they are mutually exclusive and collectively exhaustive. n For each decision alternative and state of nature, there is an outcome. n These outcomes are often represented in a matrix called a payoff table.

4 4 Slide Decision Trees n A decision tree is a chronological representation of the decision problem. n Each decision tree has two types of nodes; round nodes correspond to the states of nature while square nodes correspond to the decision alternatives. n The branches leaving each round node represent the different states of nature while the branches leaving each square node represent the different decision alternatives. n At the end of each limb of a tree are the payoffs attained from the series of branches making up that limb.

5 5 Slide Decision Making Without Probabilities n If the decision maker does not know with certainty which state of nature will occur, then he is said to be doing decision making under uncertainty. n Three commonly used criteria for decision making under uncertainty when probability information regarding the likelihood of the states of nature is unavailable are the optimistic approachthe optimistic approach the conservative approachthe conservative approach the minimax regret approach.the minimax regret approach.

6 6 Slide Optimistic Approach n The optimistic approach would be used by an optimistic decision maker. n The decision with the largest possible payoff is chosen. n If the payoff table was in terms of costs, the decision with the lowest cost would be chosen.

7 7 Slide Conservative Approach n The conservative approach would be used by a conservative decision maker. n For each decision the minimum payoff is listed and then the decision corresponding to the maximum of these minimum payoffs is selected. (Hence, the minimum possible payoff is maximized.) n If the payoff was in terms of costs, the maximum costs would be determined for each decision and then the decision corresponding to the minimum of these maximum costs is selected. (Hence, the maximum possible cost is minimized.)

8 8 Slide Minimax Regret Approach n The minimax regret approach requires the construction of a regret table or an opportunity loss table. n This is done by calculating for each state of nature the difference between each payoff and the largest payoff for that state of nature. n Then, using this regret table, the maximum regret for each possible decision is listed. n The decision chosen is the one corresponding to the minimum of the maximum regrets.

9 9 Slide Example: Marketing Strategy Consider the following problem with two decision alternatives (d 1 & d 2 ) and two states of nature S 1 (Market Receptive) and S 2 (Market Unfavorable) with the following payoff table representing profits ( $1000): States of Nature States of Nature s 1 s 3 s 1 s 3 d d Decisions Decisions d d

10 Slide Example n Optimistic Approach An optimistic decision maker would use the optimistic approach. All we really need to do is to choose the decision that has the largest single value in the payoff table. This largest value is 25, and hence the optimal decision is d 2. Maximum Maximum Decision Payoff Decision Payoff d 1 20 d 1 20 choose d 2 d 2 25 maximum

11 Slide Example n Conservative Approach A conservative decision maker would use the conservative approach. List the minimum payoff for each decision. Choose the decision with the maximum of these minimum payoffs. Minimum Minimum Decision Payoff Decision Payoff choose d 1 d 1 6 maximum choose d 1 d 1 6 maximum d 2 3 d 2 3

12 Slide Example n Minimax Regret Approach For the minimax regret approach, first compute a regret table by subtracting each payoff in a column from the largest payoff in that column. The resulting regret table is: s 1 s 2 s 1 s 2 d d d d 2 0 3

13 Slide Example n Minimax Regret Approach (continued) For each decision, list the maximum regret. Choose the decision with the minimum of these values. Decision Maximum Regret Decision Maximum Regret d 1 5 d 1 5 choose d2d 2 3minimum

14 Slide Decision Making with Probabilities n Expected Value Approach If probabilistic information regarding the states of nature is available, one may use the expected Monetary value (EMV) approach (also known as Expected Value or EV).If probabilistic information regarding the states of nature is available, one may use the expected Monetary value (EMV) approach (also known as Expected Value or EV). Here the expected return for each decision is calculated by summing the products of the payoff under each state of nature and the probability of the respective state of nature occurring.Here the expected return for each decision is calculated by summing the products of the payoff under each state of nature and the probability of the respective state of nature occurring. The decision yielding the best expected return is chosen.The decision yielding the best expected return is chosen.

15 Slide Expected Value of a Decision Alternative n The expected value of a decision alternative is the sum of weighted payoffs for the decision alternative. n The expected value (EV) of decision alternative d i is defined as: where: N = the number of states of nature P ( s j ) = the probability of state of nature s j P ( s j ) = the probability of state of nature s j V ij = the payoff corresponding to decision alternative d i and state of nature s j V ij = the payoff corresponding to decision alternative d i and state of nature s j

16 Slide Example: Marketing Strategy n Expected Value Approach Refer to the previous problem. Assume the probability of the market being receptive is known to be Use the expected monetary value criterion to determine the optimal decision.

17 Slide Expected Value of Perfect Information n Frequently information is available that can improve the probability estimates for the states of nature. n The expected value of perfect information (EVPI) is the increase in the expected profit that would result if one knew with certainty which state of nature would occur. n The EVPI provides an upper bound on the expected value of any sample or survey information.

18 Slide Expected Value of Perfect Information n EVPI Calculation Step 1:Step 1: Determine the optimal return corresponding to each state of nature. Step 2:Step 2: Compute the expected value of these optimal returns. Compute the expected value of these optimal returns. Step 3:Step 3: Subtract the EV of the optimal decision from the amount determined in step (2).

19 Slide Example: Marketing Strategy n Expected Value of Perfect Information Calculate the expected value for the best action for each state of nature and subtract the EV of the optimal decision. EVPI=.75(25,000) +.25(6,000) - 19,500 = $750 EVPI=.75(25,000) +.25(6,000) - 19,500 = $750

20 Slide The End of Chapter