CHAPTER 19: Decision Theory to accompany Introduction to Business Statistics fourth edition, by Ronald M. Weiers Presentation by Priscilla Chaffe-Stengel.

Slides:



Advertisements
Similar presentations
Decision Theory.
Advertisements

To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 3-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Prepared by.
Chapter 3 Decision Analysis.
Lesson 9.1 Decision Theory with Unknown State Probabilities.
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter 14 Decision Analysis. Decision Making Many decision making occur under condition of uncertainty Decision situations –Probability cannot be assigned.
Chapter 3 Decision Analysis.
Introduction to Management Science
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Managerial Decision Modeling with Spreadsheets
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin An Introduction to Decision Making Chapter 20.
DSC 3120 Generalized Modeling Techniques with Applications
Chap 19-1 Copyright ©2012 Pearson Education, Inc. publishing as Prentice Hall On Line Topic Decision Making Basic Business Statistics 12 th Edition.
3 Decision Analysis To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale Power Point slides created by.
Decision Analysis A method for determining optimal strategies when faced with several decision alternatives and an uncertain pattern of future events.
Part 3 Probabilistic Decision Models
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
Topic 2. DECISION-MAKING TOOLS
Decision Analysis Chapter 3
Decision Making Under Uncertainty and Under Risk
Decision Analysis Introduction Chapter 6. What kinds of problems ? Decision Alternatives (“what ifs”) are known States of Nature and their probabilities.
Operations Management Decision-Making Tools Module A
To accompany Quantitative Analysis for Management, 8e by Render/Stair/Hanna 3-1 © 2003 by Prentice Hall, Inc. Upper Saddle River, NJ Chapter 3 Fundamentals.
Decision Making Under Uncertainty Introduction to Business Statistics, 5e Kvanli/Guynes/Pavur (c)2000 South-Western College Publishing.
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
Decision Analysis Chapter 3
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 12 - SELF TEST 9 Chapter 12 - SELF TEST 18.
MA - 1© 2014 Pearson Education, Inc. Decision-Making Tools PowerPoint presentation to accompany Heizer and Render Operations Management, Eleventh Edition.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
8-1 CHAPTER 8 Decision Analysis. 8-2 LEARNING OBJECTIVES 1.List the steps of the decision-making process and describe the different types of decision-making.
Module 5 Part 2: Decision Theory
An Introduction to Decision Theory (web only)
An Introduction to Decision Theory
PowerPoint presentation to accompany Operations Management, 6E (Heizer & Render) © 2001 by Prentice Hall, Inc., Upper Saddle River, N.J A-1 Operations.
3-1 Quantitative Analysis for Management Chapter 3 Fundamentals of Decision Theory Models.
Decision Theory Decision theory problems are characterized by the following: 1.A list of alternatives. 2.A list of possible future states of nature. 3.Payoffs.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
Course Title: Qantitative Business Analysis - Dr:Galal I. Elabd Decision Theory [1] Dr: Galal I. Elabd Business Administration.
Decision Analysis Mary Whiteside. Decision Analysis Definitions Actions – alternative choices for a course of action Actions – alternative choices for.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Lecture 6 Decision Making.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Decision Analysis. Basic Terms Decision Alternatives (eg. Production quantities) States of Nature (eg. Condition of economy) Payoffs ($ outcome of a choice.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Decision Analysis.
Decision Theory Copyright © 2015 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill.
Chapter 12 Decision Analysis. Components of Decision Making (D.M.) F Decision alternatives - for managers to choose from. F States of nature - that may.
DECISION MODELS. Decision models The types of decision models: – Decision making under certainty The future state of nature is assumed known. – Decision.
Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
DECISION THEORY & DECISION TREE
Chapter Twenty McGraw-Hill/Irwin
Welcome to MM305 Unit 4 Seminar Larry Musolino
Decision Theory Dr. T. T. Kachwala.
Chapter 19 Decision Making
Decision Analysis Chapter 12.
نظام التعليم المطور للانتساب
نظام التعليم المطور للانتساب
Decision Theory Analysis
Decision Analysis.
Chapter 17 Decision Making
Presentation transcript:

CHAPTER 19: Decision Theory to accompany Introduction to Business Statistics fourth edition, by Ronald M. Weiers Presentation by Priscilla Chaffe-Stengel Donald N. Stengel © 2002 The Wadsworth Group

Chapter 19 - Learning Objectives Express a decision situation in terms of decision alternatives, states of nature, and payoffs. Differentiate between non-Bayesian and Bayesian decision criteria. Determine the expected payoff for a decision alternative. Calculate and interpret the expected value of perfect information. Express and analyze the decision situation in terms of opportunity loss and expected opportunity loss. Apply incremental analysis to inventory-level decisions. © 2002 The Wadsworth Group

Chapter 19 - Key Terms Levels of doubt –Risk –Uncertainty –Ignorance Decision situation –Decision alternatives –States of nature –Probabilities –Expected payoff Maximin criteria Maximax criteria Minimax regret Expected value of perfect information Expected opportunity loss Incremental analysis © 2002 The Wadsworth Group

The Decision Situation The decision maker can control which decision alternative ( row ) is selected but cannot determine which state of nature ( column ) will occur. The decision alternative is selected prior to knowing the state of nature. © 2002 The Wadsworth Group

An Example Problem 19.34: A ski resort operator must decide before the winter season whether he will lease a snow- making machine. If he has no machine, he will make $20,000 if the winter is mild, $30,000 if it is typical, and $50,000 if the winter is severe. If he decides to lease the machine, his profits for these conditions will be $30,000, $35,000, and $40,000, respectively. The probability of a mild winter is 0.3, with a 0.5 chance of a typical winter and a 0.2 chance of a severe winter. If the operater wants to maximize his expected profit, should he lease the machine? What is the most he should be willing to pay for a perfect forecast? © 2002 The Wadsworth Group

The Decision Situation: An Example The decision alternatives are: –The operator does not lease the snow-making machine. –The operator does lease the snow-making machine. The states of nature are: –The winter is mild. –The winter is typical. –The winter is severe. © 2002 The Wadsworth Group

The Payoff Table where v ij is the payoff value associated with the selecting Alternative i and having State j occur, and p j is the probability that State j occurs. © 2002 The Wadsworth Group

The Payoff Table: An Example © 2002 The Wadsworth Group

The Decision Tree p 1 State 1 Occurs v 11 p 2 State 2 Occurs v 12 p 3 State 3 Occurs v 13 p 1 State 1 Occurs v 21 p 2 State 2 Occurs v 22 p 3 State 3 Occurs v 23 p 1 State 1 Occurs v 31 p 2 State 2 Occurs v 32 p 3 State 3 Occurs v 33 Select Alternative 1 Select Alternative 2 Select Alternative 3 Decision Alternatives State of Nature Payoff © 2002 The Wadsworth Group

The Decision Tree: An Example 0.3 Winter mild $20, Winter typical $30, Winter severe $50, Winter mild $30, Winter typical $35, Winter severe $40,000 Does not lease snow- making machine Does lease snow- making machine © 2002 The Wadsworth Group

Non-Bayesian Decision Theory: Strategies Without Probabilities Maximin Strategy - Select the alternative with the least unfavorable possible outcome. Maximax Strategy - Select the alternative with the best possible outcome. Minimax Regret - Select the alternative that minimizes the regret the decision maker will experience after the state of nature is known. © 2002 The Wadsworth Group

Non-Bayesian Decision Theory: An Example Maximin Strategy: –Decide to lease the snow-making machine because the minimum payoff for that alternative is $30,000, which beats the minimum payoff of $20,000 for the alternative to not lease the snow-making machine. Maximax Strategy: –Decide to not lease the snow-making machine because the maximum payoff for that alternative is $50,000, which beats the maximum payoff of $40,000 for the alternative to lease the snow-making machine. © 2002 The Wadsworth Group

Bayesian Decision Theory: Strategies With Probabilities Expected Payoff (or Expected Monetary Value) Criterion: Select the alternative where the expected value for the payoff is the best. Expected Opportunity Loss Criterion: Select the decision alternative with the minimum expected regret value. © 2002 The Wadsworth Group

Expected Value: An Example 0.3 Winter mild $20, Winter typical $30, Winter severe $50, Winter mild $30, Winter typical $35, Winter severe $40,000 Does not lease snow- making machine Does lease snow- making machine 0.3($20,000) + 0.5($30,000) + 0.2($50,000) = $31, ($30,000) + 0.5($35,000) + 0.2($40,000) = $34,500 © 2002 The Wadsworth Group

Expected Value: An Example In the long run, the operator will expect to earn $34,500 if he does lease the snow-making machine compared to $31,000 if he does not lease the snow- making machine. Best Decision: Lease the snow-making machine. © 2002 The Wadsworth Group

The Expected Value of Perfect Information (EVPI) EVPI = – where the expected payoff value of perfect information is the product of the probability that state of nature j occurs times the best payoff of any alternative for state j. The EVPI represents the maximum amount the decision maker should be willing to spend to reduce uncertainty about which state of nature will occur. Expected payoff with perfect information Expected payoff with present information © 2002 The Wadsworth Group

The Expected Value of Perfect Information: An Example With perfect information, the operator will: –Lease the machine in a mild winter, $30,000 –Lease the machine in a typical winter, $35,000 –Not lease the machine in a severe winter, $50,000 Perfect information will earn the operator: 0.3($30,000) + 0.5($35,000) + 0.2($50,000) = $36,500 So the value of perfect information is: $36,500 – $34,500 = $2,000 © 2002 The Wadsworth Group

The Expected Opportunity Loss (EOL) EOL is another term for regret and is calculated in a manner similar to expected payoff: EOL = where p i is the probability that state of nature i will occur, and l i is the opportunity loss if this alternative is selected and state of nature i occurs. © 2002 The Wadsworth Group

EOL: An Example 0.3 Winter mild $30,000 – $20, Winter typical $35,000 – $30, Winter severe $0 0.3 Winter mild $0 0.5 Winter typical $0 0.2 Winter severe $50,000 – $40,000 Does not lease snow- making machine Does lease snow- making machine 0.3($10,000) + 0.5($5,000) + 0.2($0) = $5, ($0) + 0.5($0) + 0.2($10,000) = $2,000 © 2002 The Wadsworth Group

EOL: An Example In the long run, the operator will expect to have an opportunity loss of $5,500 if he does not lease the snow-making machine compared to $2,000 if he does lease the snow-making machine. Best Decision: Lease the snow-making machine. © 2002 The Wadsworth Group

Incremental Analysis for Inventory Decisions When the numbers of decision alternatives and states of nature are extremely large, the payoff table and related decision tree may be too cumbersome to use in decision making. In such applications, we can use incremental analysis. Applied to inventory decisions, inventory units –are sequentially considered; –are stocked only if marginal profit exceeds marginal loss. © 2002 The Wadsworth Group