BA 555 Practical Business Analysis

Slides:



Advertisements
Similar presentations
Decision Theory.
Advertisements

To accompany Quantitative Analysis for Management, 9e by Render/Stair/Hanna 3-1 © 2006 by Prentice Hall, Inc. Upper Saddle River, NJ Prepared by.
Chapter 3 Decision Analysis.
Decision Analysis Chapter 3
Chapter 8: Decision Analysis
20- 1 Chapter Twenty McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
1 1 Slide © 2004 Thomson/South-Western Payoff Tables n The consequence resulting from a specific combination of a decision alternative and a state of nature.
Chapter 18 Statistical Decision Theory Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall Statistics for Business and Economics 7 th.
Decision Theory.
LECTURE TWELVE Decision-Making UNDER UNCERTAINITY.
Chapter 21 Statistical Decision Theory
Chapter 3 Decision Analysis.
Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter Twenty An Introduction to Decision Making GOALS.
Managerial Decision Modeling with Spreadsheets
1 1 Slide © 2000 South-Western College Publishing/ITP Slides Prepared by JOHN LOUCKS.
©The McGraw-Hill Companies, Inc. 2008McGraw-Hill/Irwin An Introduction to Decision Making Chapter 20.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS St. Edward’s University.
Dr. C. Lightner Fayetteville State University
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or.
Chapter 7 Decision Analysis
Slides prepared by JOHN LOUCKS St. Edward’s University.
Chapter 4 Decision Analysis.
3 Decision Analysis To accompany Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale Power Point slides created by.
1 1 Slide Decision Analysis n Structuring the Decision Problem n Decision Making Without Probabilities n Decision Making with Probabilities n Expected.
Part 3 Probabilistic Decision Models
1 1 Slide Decision Analysis Professor Ahmadi. 2 2 Slide Decision Analysis Chapter Outline n Structuring the Decision Problem n Decision Making Without.
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter.
1 1 Slide © 2009 South-Western, a part of Cengage Learning Slides by John Loucks St. Edward’s University.
Topic 2. DECISION-MAKING TOOLS
Business 260: Managerial Decision Analysis
ISMT 161: Introduction to Operations Management
Decision Analysis Chapter 3
Decision Making Under Uncertainty and Under Risk
Decision analysis: part 1 BSAD 30 Dave Novak Source: Anderson et al., 2013 Quantitative Methods for Business 12 th edition – some slides are directly from.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
© 2008 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools PowerPoint presentation to accompany Heizer/Render Principles of.
Operations Management Decision-Making Tools Module A
Operations Management Decision-Making Tools Module A
CD-ROM Chap 14-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition CD-ROM Chapter 14 Introduction.
Decision Analysis Chapter 3
1 1 Slide © 2005 Thomson/South-Western EMGT 501 HW Solutions Chapter 12 - SELF TEST 9 Chapter 12 - SELF TEST 18.
© 2006 Prentice Hall, Inc.A – 1 Operations Management Module A – Decision-Making Tools © 2006 Prentice Hall, Inc. PowerPoint presentation to accompany.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
“ The one word that makes a good manager – decisiveness.”
An Introduction to Decision Theory
Chapter 3 Decision Analysis.
Decision Theory Decision theory problems are characterized by the following: 1.A list of alternatives. 2.A list of possible future states of nature. 3.Payoffs.
1 1 Slide Decision Theory Professor Ahmadi. 2 2 Slide Learning Objectives n Structuring the decision problem and decision trees n Types of decision making.
Course Title: Qantitative Business Analysis - Dr:Galal I. Elabd Decision Theory [1] Dr: Galal I. Elabd Business Administration.
Decision Analysis Mary Whiteside. Decision Analysis Definitions Actions – alternative choices for a course of action Actions – alternative choices for.
Welcome Unit 4 Seminar MM305 Wednesday 8:00 PM ET Quantitative Analysis for Management Delfina Isaac.
Models for Strategic Marketing Decision Making. Market Entry Decisions To enter first or to wait Sources of First-Mover Advantages –Technological leadership.
Decision Trees. Introduction Decision trees enable one to look at decisions: with many alternatives and states of nature which must be made in sequence.
Fundamentals of Decision Theory Chapter 16 Mausam (Based on slides of someone from NPS, Maria Fasli)
BUAD306 Chapter 5S – Decision Theory. Why DM is Important The act of selecting a preferred course of action among alternatives A KEY responsibility of.
Decision Theory McGraw-Hill/Irwin Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved.
Decision Analysis.
1 1 © 2003 Thomson  /South-Western Slide Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Decision Making Under Uncertainty: Pay Off Table and Decision Tree.
Chap 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis.
Chapter 19 Statistical Decision Theory ©. Framework for a Decision Problem action i.Decision maker has available K possible courses of action : a 1, a.
Chapter 8 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with Probabilities n Risk Analysis and Sensitivity.
1 1 Slide © 2005 Thomson/South-Western Chapter 13 Decision Analysis n Problem Formulation n Decision Making without Probabilities n Decision Making with.
QUANTITATIVE TECHNIQUES
Chapter Twenty McGraw-Hill/Irwin
Chapter 5S – Decision Theory
Operations Management
John Loucks St. Edward’s University . SLIDES . BY.
MNG221- Management Science –
Statistical Decision Theory
Presentation transcript:

BA 555 Practical Business Analysis Agenda Decision Analysis PrecisionTree

Decision-making under Certainty Decision-making under certainty entails the selection of a course of action when we know the results that each alternative action will yield. This type of decision problems can be solved by linear/integer programming technique. Example: A company produces two different auto parts A and B. Part A (B) requires 2 (2) hours of grinding and 2 (4) hours of finishing. The company has two grinders and three finishers, each of which works 40 hours per week. Each Part A (B) brings a profit of $3 ($4). How many items of each part should be manufactured per week?

Decision-making under Uncertainty Decision-making under uncertainty entails the selection of a course of action when we do not know with certainty the results that each alternative action will yield. This type of decision problems can be solved by statistical techniques along with good judgment and experience. Example 1 (p.105). McCovery Development Co. has purchased land in Texas, on the shore of the Gulf of Mexico, and is attempting to determine the size of the condominium complex it should build. Three sizes are being considered: small, medium, and large. Management also contemplates three possible levels of demand: low, medium, and high, each equally probable. (1). If the demand is high, McCovey will make $900K if they build the large complex, $600K if they build the medium complex, and $400K if they build the small complex. (2). If the demand is medium, McCovey will make $300K if they build the large complex, $600K if they build the medium complex, and $400K if they build the small complex. (3). If the demand is low, McCovery will lose $300K if they build the large complex, will make $100K if they build the medium complex, and will make $400K if they build the small complex. What is the optimal strategy of the company?

Elements of a Decision Analysis (p.106) Alternative/Action: An alternative (or action) is a course of action intended to solve a problem. Build a small size of condominium complex Build a medium size of condominium complex Build a large size of condominium complex State of Nature and Probabilities: The uncontrollable future events that affect the payoff associated with a decision alternative. Low demand (1/3) Medium demand (1/3) High demand (1/3) Payoff: The outcome measure, such as profit or cost. Each combination of a decision alternative and a state of nature has an associated payoff. If the demand is high, McCovey will make $900K if they build the large complex. If the demand is low, McCovery will lose $300K if they build the large complex. Payoff Matrix: A tabular representation of the payoffs for a decision problem. The rows of the matrix correspond to the decision alternatives, and the columns of the matrix correspond to the possible states of nature.

Decision Rules for Single-Stage Decision Problems The Maximax Decision Rule The Maximin Decision Rule The Minimax Regret Decision Rule The Expected Monetary Value Decision Rule The Expected Regret Decision Rule

The Maximax Decision Rule

The Maximin Decision Rule

The Minimax Regret Decision Rule Regret Matrix: a table summarizes the possible opportunity losses that could result from each decision alternative under each state of nature. Each entry in the regret matrix shows the difference between the maximum payoff that can occur under a given state of nature and the payoff that would be realized from each alternative under the same state of nature.

The EMV Decision Rule Expected Monetary Value (EMV): the weighted average of the payoffs, with weights given by the probabilities of the different states of nature. This rule selects the decision alternative with the largest expected monetary value.

The Expected Opportunity Loss Decision Rule

Decision Tree Using the EMV Rule Read the tree from left to right Decision Tree is a graphical representation of the decision problem that shows the sequential nature of the decision-making process. In a decision tree, decisions are denoted by boxes. random (uncertain) outcomes are denoted by circles. Solve the tree from right to left At a box, choose the branch with the best EMV. At a chance node (circle), computer the EMV.

Solving Multi-Stage Decision Problems – Decision Tree Oilco must determine whether or not to drill for oil in the South China Sea. It costs $1M and if oil is found the value is estimated to be $6M. At present, Oilco believes there is a 45% chance that the field contains oil. Before drilling, Oilco can hire (for $100K) a geology firm to obtain more information about the likelihood that the field will contain oil. Oilco believes there is a 50% chance that the geologist will issue a favorable report, and a 50% chance of an unfavorable report. Given a favorable report, there is a 80% chance that the field contains oil. Given an unfavorable report, there is a 10% chance that the field contains oil. Construct a decision tree to identify Oilco’s possible actions. Clearly label each node and provide sufficient information (e.g., payoff, probability) on each node and branch.

Example 2

Expected Value of Perfect Information Expected Value of Sample Information EVPI = EMV free perfect information – EMV with no information How much would you pay for perfect information? EVSI = EMV with free sample information – EMV with no information Suppose a market research shows that the probabilities of having a low, med., high demand are 0.25, 0.50, 0.25. How much would you pay for sample information (e.g., market research)?