Lecture 4 The Formation and Evolution of CMEs. Coronal Mass Ejections (CMEs) Appear as loop like features that breakup helmet streamers in the corona.

Slides:



Advertisements
Similar presentations
Observational evidence of a magnetic flux rope eruption associated with the X3 flare on 2002 July 15 Liu Yu Solar Seminar, 2003 June 16.
Advertisements

Lecture 9 Prominences and Filaments Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun,"
The magnetic nature of solar flares Paper by E.R. Priest & T.G. Forbes Review presented by Hui Song.
The Relationship Between CMEs and Post-eruption Arcades Peter T. Gallagher, Chia-Hsien Lin, Claire Raftery, Ryan O. Milligan.
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
CME/Flare Mechanisms Solar “minimum” event this January For use to VSE must be able to predict CME/flare Spiro K. Antiochos Naval Research Laboratory.
Magnetic Reconnection Across the HCS Mark Moldwin UM and Megan Cartwright UC-Berkeley Isradynamics April 2010 With thanks to Mark Linton at NRL Linton.
Valbona Kunkel June 18, 2013 Hvar, Croatia NEW THEORITICAL WORK ON FLUX ROPE MODEL AND PROPERTIES OF MAGNETIC FIELD.
A Whole-Heliosphere View of the Solar Wind Hale Lecture American Astronomical Society 5/24/2010 Marcia Neugebauer University of Arizona.
The Sun’s Dynamic Atmosphere Lecture 15. Guiding Questions 1.What is the temperature and density structure of the Sun’s atmosphere? Does the atmosphere.
Reviewing the Summer School Solar Labs Nicholas Gross.
Observations –Morphology –Quantitative properties Underlying Physics –Aly-Sturrock limit Present Theories/Models Coronal Mass Ejections (CME) S. K. Antiochos,
1 Diagnostics of Solar Wind Processes Using the Total Perpendicular Pressure Lan Jian, C. T. Russell, and J. T. Gosling How does the magnetic structure.
STEREO AND SPACE WEATHER Variable conditions in space that can have adverse effects on human life and society Space Weather: Variable conditions in space.
Chip Manchester 1, Fang Fang 1, Bart van der Holst 1, Bill Abbett 2 (1)University of Michigan (2)University of California Berkeley Study of Flux Emergence:
Two energy release processes for CMEs: MHD catastrophe and magnetic reconnection Yao CHEN Department of Space Science and Applied Physics Shandong University.
Center for Space Environment Modeling T. H. Zurbuchen, on behalf of W. Manchester, J. Kota, I. Roussev, T. H. Zurbuchen, N.
Center for Space Environment Modeling Ward Manchester University of Michigan Yuhong Fan High Altitude Observatory SHINE July.
In both cases we want something like this:
Ward Manchester University of Michigan Coupling of the Coronal and Subphotospheric Magnetic Field in Active Regions by Shear Flows Driven by The Lorentz.
When will disruptive CMEs impact Earth? Coronagraph observations alone aren’t enough to make the forecast for the most geoeffective halo CMEs. In 2002,
Catastrophic flux rope model for CMEs: force balance analysis and preliminary calculations of the impact of magnetic reconnection on the rope dynamics.
Merging of coronal and heliospheric numerical two-dimensional MHD models D. Odstrcil, et al., J. Geophys. Res., 107, 年 10 月 14 日 太陽雑誌会 ( 速報.
Coronal and Heliospheric Modeling of the May 12, 1997 MURI Event MURI Project Review, NASA/GSFC, MD, August 5-6, 2003 Dusan Odstrcil University of Colorado/CIRES.
RT Modelling of CMEs Using WSA- ENLIL Cone Model
Thomas Zurbuchen University of Michigan The Structure and Sources of the Solar Wind during the Solar Cycle.
The Sun and the Heliosphere: some basic concepts…
The Sun Earth Science - Mr. Gallagher. The Sun is the Earth's nearest star. Similar to most typical stars, it is a large ball of hot electrically charged.
Numerical simulations are used to explore the interaction between solar coronal mass ejections (CMEs) and the structured, ambient global solar wind flow.
CME Initiation: The Matrix Reloaded David Alexander, Rice University.
Evolution of the 2012 July 12 CME from the Sun to the Earth: Data- Constrained Three-Dimensional MHD Simulations F. Shen 1, C. Shen 2, J. Zhang 3, P. Hess.
The Sun Section 26.1.
The Sun By: Kristel Curameng and Courtney Lee. The Sun The Sun is the most prominent feature in our solar system. The largest object and contains approximately.
1 THE RELATION BETWEEN CORONAL EIT WAVE AND MAGNETIC CONFIGURATION Speakers: Xin Chen
Space Weather from Coronal Holes and High Speed Streams M. Leila Mays (NASA/GSFC and CUA) SW REDISW REDI 2014 June 2-13.
Three-dimensional MHD simulation of a flux rope driven CME Manchester IV, W.B., Gombosi, T.I., Roussev, I., De Zeeuw, D.L., Sokolov, I.V., Powell, K.G.,
Comparison of the 3D MHD Solar Wind Model Results with ACE Data 2007 SHINE Student Day Whistler, B. C., Canada C. O. Lee*, J. G. Luhmann, D. Odstrcil,
Solar Wind and Coronal Mass Ejections
The Solar Wind.
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Heliosphere: The Solar Wind March 01, 2012.
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Conclusions Using the Diffusive Equilibrium Mapping Technique we have connected a starting point of a field line on the photosphere with its final location.
The Sun Stellar Evolution: Low Mass Stars White Dwarfs
3D Reconnection Simulations of Descending Coronal Voids Mark Linton in collaboration with Dana Longcope (MSU)
3D simulations of solar emerging flux ISOBE Hiroaki Plasma seminar 2004/04/28.
II. MAGNETOHYDRODYNAMICS (Space Climate School, Lapland, March, 2009) Eric Priest (St Andrews)
Interplanetary Shocks in the Inner Solar System: Observations with STEREO and MESSENGER During the Deep Solar Minimum of 2008 H.R. Lai, C.T. Russell, L.K.
The Magnetic Sun. What is the Sun? The Sun is a Star, but seen close-up. The Stars are other Suns but very far away.
White light coronagraph showing prominances and streamers The Coronal Magnetic Field.
Observations and nonlinear force-free field modeling of active region Y. Su, A. van Ballegooijen, B. W. Lites, E. E. DeLuca, L. Golub, P. C. Grigis,
III. APPLICATIONS of RECONNECTION Yohkoh Bright Pts Loops Holes A magnetic world T=few MK 1. Coronal Heating.
Modeling 3-D Solar Wind Structure Lecture 13. Why is a Heliospheric Model Needed? Space weather forecasts require us to know the solar wind that is interacting.
A Numerical Study of the Breakout Model for Coronal Mass Ejection Initiation P. MacNeice, S.K. Antiochos, A. Phillips, D.S. Spicer, C.R. DeVore, and K.
Observations –Morphology –Quantitative properties Underlying Physics –Aly-Sturrock limit Present Theories/Models Coronal Mass Ejections (CME) S. K. Antiochos,
1 Test Particle Simulations of Solar Energetic Particle Propagation for Space Weather Mike Marsh, S. Dalla, J. Kelly & T. Laitinen University of Central.
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
Manuela Temmer Institute of Physics, University of Graz, Austria Tutorial: Coronal holes and space weather consequences.
An Introduction to Observing Coronal Mass Ejections
Y. C.-M. Liu, M. Opher, O. Cohen P.C.Liewer and T.I.Gombosi
Xuepu Zhao Oct. 19, 2011 The Base of the Heliosphere: The Outer (Inner) Boundary Conditions of Coronal (Heliospheric) models.
Introduction to Space Weather Interplanetary Transients
GOAL: To understand the physics of active region decay, and the Quiet Sun network APPROACH: Use physics-based numerical models to simulate the dynamic.
D. Odstrcil1,2, V.J. Pizzo2, C.N. Arge3, B.V.Jackson4, P.P. Hick4
Measuring the Astronomical Unit
Solar Wind Transients and SEPs
Corona Mass Ejection (CME) Solar Energetic Particle Events
Lecture 5 The Formation and Evolution of CIRS
Abstract We simulate the twisting of an initially potential coronal flux tube by photospheric vortex motions. The flux tube starts to evolve slowly(quasi-statically)
The Sun.
Measuring the Astronomical Unit
Presentation transcript:

Lecture 4 The Formation and Evolution of CMEs

Coronal Mass Ejections (CMEs) Appear as loop like features that breakup helmet streamers in the corona. Three part structure: –Bright outer rim –Dark cavity behind rim –Bright inner core of erupted prominence material

Scales of CMEs Gray areas are covered by codes Micro – inertial length, Larmor radius As CME propagates out through the solar system – both time and spatial scales increase (apparent shrinking is do to log log plot)

Prominences Suspensions of cool (T~10 4 K), dense (n~ cm -3 ) chromospheric material surrounded by the hot (T~10 6 K) and tenuous (n~ cm -3 ) corona

Prominence Magnetic Field Magnetic field is found to be approximately aligned with the filament. Highly sheared field. Called a filament when viewed from above. Can be stable for days or weeks.

Fundamental Questions How are CMEs initiated? –Widely accepted that the energy of CMEs is stored in coronal magnetic fields – the strongly sheared field of a filament (prominence) channel. –The CME is thought to be the catastrophic disruption of the force balance between the upward magnetic pressure of the filament and the downward tension of the overlying field. –How this disruption occurs is the main unanswered question in CME initiation. Flux cancellation models Breakout models Flux injection model

Flux Cancellation Models Flux cancellation is the disappearance of magnetic fields of opposite polarity at the neutral line separating them. Flux cancellation at the neutral line of a sheared arcade causes the flux rope that supports prominence material. Equilibrium breaks down if flux cancellation continues after the flux rope is formed. A new equilibrium forms farther out. In reality the solar wind pulls the flux rope out and forms a current sheet at which reconnection occurs.

A Simulation Study of the Eruption of a CME (Linker et al., 2003) The initial configuration –azimuthal symmetry –Build a model of a helmet streamer –Use a spherically symmetric MHD solar wind solution –Use a potential magnetic field –Integrate until an equilibrium results. –To create a source of free magnetic energy put a shear flow near the neutral line of the streamer – specify the tangential E field.

Formation of a Flux Rope (top) Projected field lines (shading) and azimuthal field (color) (middle) Current density out of the plane. (bottom) Polarization brightness that a coronagraph would observe. Flux cancellation forms a stable flux rope within the helmet streamer (1350τ A ) Once the configuration is beyond a stability threshold halting the flux cancellation cannot stop the eruption (1390τ A ). Prominence formation is part of the flux cancellation mechanism.

Change in Magnetic Energy and Kinetic Energy Magnetic energy closed flux (top-bottom), kinetic energy (bottom) During formation of helmet streamer B 2 /2μ 0 increases 15% (t<600) Energization of streamer (600>t>1300) Flux rope formation (1320) Eruption (1380) Energy of open flux (top- top) – eruption occurs when closed energy ~ open energy Half of energy goes into flux rope.

Add azimuthal asymmetry Azimuthal models – entire coronal field must be opened and flux rope is detached from the Sun. 3D model allows azimuthal asymmetry. Reduce magnetic flux only in one sector of Sun. Creation of flux rope and eruption occur as before.

Structure of flux rope Isosurface of density Field lines in flux rope after it has propagated away from the Sun Note that both ends of the flux rope are attached to the Sun.

The Breakout Model Reconnection occurs external to the filament channel – quasi-potential overlying flux and neighboring flux systems. Axisymmetric system with two spatial dimensions and three velocity dimensions (MacNeice et al., 2004). Imposed shear flow at the equatorial neutral line – generates a B φ which produces an upward magnetic pressure (50251s, 70680s) As fluxrope expands outward – downward tension on overlying field lines increases – stretch radially the field near the null. Reconnection begins at the top of the expanding rope (79008) Vertical current sheet forms deep inside (85185) – reconnects.

050251s 70680s 85185s 79008s 95020s

Mass Density and Radial Velocity of Flux Rope

The Breakout Model and Observations The main feature of the breakout model –“Flare” reconnection does not initiate the eruption, –Multipolar pre-eruption topology Density difference shows changes in density. The three part structure seen in coronagraph images is found in the simulations. Lynch et al., 2004

Energetics of the Breakout Model Azimuthal magnetic energy – solid line Azimuthal magnetic energy below 1.5R S – dashed-dotted line Change in non-azimuthal energy – dashed line The kinetic energy – dotted line with triangles. Initially about half of the azimuthal magnetic energy is converted into kinetic energy. By the end of the simulation all magnetic energy about 1.5R S has been converted.

Flux Injection Model (Chen, 1989, 1996) The underlying magnetic field of a CME is that of a three-dimensional flux rope. While all models end up with flux ropes this one starts with them. The flux rope is determined by the Lorentz force, pressure gradients and drag on the coronal plasma. It is difficult to distinguish between the flux cancellation models and the flux injection model since they evolve in the same way once the flux rope emerges.

CME Evolution and Propagation (Forbes et al., 2006) A CME propagates through the interplanetary medium as an ICME. Assume a flux tube (the CME) circles the Sun like in the symmetric simulation. Under excess internal pressure the flux tube expands – that expansion is resisted by the inertial reaction of the medium into which it expands. The excess total pressure (particle plus magnetic) causes the flux tube to accelerate into the medium over coming gravity and drag.

Basic Interaction The interaction can be written in words –Expansion (Ambient mass density) X (Rate of expansion) 2 = Delta Pressure (inside – outside) –Acceleration (Mass of CME + Virtual mass) X Acceleration = Force of gravity + Delta (outside magnetic and particle pressure on lower surface area – outside magnetic and particle pressure on upper surface area) – Drag Virtual mass allows us to correct for the force necessary to move all the ambient medium away = volume of cylinder time the mass density of the ambient medium. –Problem is in turning this into equations. Standard drag term C D Aρ abs (V CME –V sw ) (V CME –V sw ) where C D is a drag coefficient, and (V CME –V sw ) is relative velocities of CME and solar wind. How to do it is controversial.

MHD simulation of CME propagation in the heliosphere (Riley et al., 2003) Combined a CME eruption model (flux cancellation) with a solar wind model. Flux cancellation model was used as input to solar wind model. –Flux cancellation model assumes  =1.05 to mimic near- isothermal corona. –Solar wind model has  =5/3. –Discontinuity at interface is “harmless” affecting only temperature slightly. –Corotation enforced at the boundary between the models –Plasma and magnetic field parameters were set at the outer boundary of the heliospheric simulation

Evolution of the CME out to 0.5AU Number density – black; V r – color contours; Magnetic field lines – blue White line is boundary between solutions. Flux rope becomes circular and then “pancake” shaped – kinematic expansion as ejecta expands and then collision with surrounding material. Shock and flux rope develop concave deformations.

Evolution of CME out to 5AU Density – red, field lines – black and velocity shading. Ejecta becomes more distorted with distance. Acceleration related to post eruption reconnection.

Comparison with spacecraft observations Ejecta was traveling faster than ambient solar wind –shock (both) Speed profiles are similar Simulated B does not have peak in sheath (ACE)) Magnetic discontinuity not found in simulation (Ulysses) B modeled better at Ulysses. Strong magnetic structure at Ulysses but not at ACE – Ulysses passed near center of flux rope – ACE near the flank