Joints!  3 types of joints if we classify by function (i.e., by the degree of movement possible): 1.Diarthroses  Freely moveable joints  Shoulder, knee,

Slides:



Advertisements
Similar presentations
Where bones come together.
Advertisements

COMMON COURSE OBJECTIVES:
Skeletal System Joint Notes Joints perform two functions Hold bones together Allow rigid skeleton some flexibility so movement can occur.
Joints. Joint (AKA Articulation) A point of contact between bones, between cartilage and bone or between teeth and bone.
Joints!  3 types of joints if we classify by function (i.e., by the degree of movement possible): 1.Diarthroses (Synovial)  Freely moveable joints 
Joints Articulations. Functions Hold the bones together securely Give the rigid skeleton mobility.
Articulations (joints)
Skeletal System Articulations. Articulation (joint): a point of contact between bones. Some allow movement, others are immovable (sutures). Most joints.
Ch. 9 Joints.
Joint Structure.
ARTICULATIONS Joints between bones Hold bones firmly to each other Permit movement Classified by degree of movement (range of motion) and type of substance.
Anatomy & Physiology The Skeletal System- Part 4.
Joints Articulations of bones Functions of joints – Hold bones together – Allow for mobility Two ways joints are classified – Functionally – Structurally.
Joints and Articulations Honors Anatomy & Physiology Ms. Susan Chabot.
COMMON COURSE OBJECTIVES:
Joints.
Joints Part A 8.
8 Joints Part B. Types of Synovial Joints 1. Plane joints  Articular surfaces are essentially flat  Allow only slipping or gliding movements  Only.
Joints.  Articulations of bones  Functions of joints  Hold bones together  Allow for mobility  Ways joints are classified  Functionally  Structurally.
Articulations.
Joints & Articulations
ARTICULATIONS.
Articulations A. Joints (articulations) – wherever two bones meet B. Functions – dependent on need for strength and mobility 1. joints in skull are very.
Joints Chapter 8.
Chapter 7. Joints  A Joint is the articulation of two or more bones Knee, Elbow, hip, etc.  Functions Hold bones together Allow for mobility  Classification.
Chapter 8 Joints of the Skeletal System
Articulations or Joints
Joints of the Skeletal System
Articulations Bone-bone; Bone-cartilage; Bone-teeth Fibrous Cartilaginous Synovial Structural Classification of Articulations.
Joints. Copyright © 2010 Pearson Education, Inc. Figure 8.1 Fibrous joints. Dense fibrous connective tissue Suture line Root of tooth Socket of alveolar.
PowerPoint ® Lecture Slide Presentation prepared by Dr. Kathleen A. Ireland, Biology Instructor, Seabury Hall, Maui, Hawaii Articulations.
Skeletal Joints I. Skeletal Joints- also called articulations (place where two or more bones meet) A. Functions of Joints: 1. Give skeleton mobility (allow.
Joints Chapter 8.
Skeletal Joints I. Skeletal Joints- also called articulations (place where two or more bones meet) A. Functions of Joints: 1. Give skeleton mobility (allow.
Classification of Joints A joint (also called an articulation) is a point of contact between bones, between cartilage and bones, or between teeth and bone.
Chapter 9 Joints Lecture slides prepared by Curtis DeFriez, Weber State University.
Flashcard Warm-up Bone Marking Examples (write the marking and identify the bone the marking is found on) Medial malleolus Greater trochanter Corocoid.
Joints of the Skeletal System Articulations Junctions between bones Bind parts of skeletal system together Make bone growth possible Permit parts of the.
Joints.
Joints. How Joints Are Classified According to movability According to the material binding them together.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Objective 9 Compare and contrast the three major categories of joints. Give an.
1 Chapter 8 Joints of the Skeletal System Articulations Functional junctions between bones Bind parts of skeletal system together Make bone growth possible.
Moving a part around an axis Rotation. Bending the head back beyond the upright position is called ______ Hyperextension.
JOINTS A site where two or more bones come together, whether or not movement occurs between them, is called a joint. Joints are classified according.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings WEEK 22 A&P.
Joints P A R T B. Plane Joint Plane joints Flat articular surfaces Slipping or gliding Only nonaxial joints Figure 8.7a.
JOINTS Every bone except the hyoid forms a joint (articulation) ◦2 functions  Hold bones together securely  Give the rigid skeleton mobility 2 CLASSIFICATIONS.
Chapter 8Joints. Joints Also called articulations; place where two or more bones meet Function- Hold skeleton together and give it mobility.
Joints.
Figure 8.3 General structure of a synovial joint.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Joints (Articulations)  Weakest parts of the skeleton  Articulation – site.
Chapter 8 Joints.
OBJECTIVE Name the three major categories of joints, and compare the amount of movement allowed by each.
Chapter 8 The Joints Part B.
NOTES part 5 : Joints and Types of Movements (Ch 7)
Joints! 3 types of joints if we classify by function (i.e., by the degree of movement possible): Diarthroses Freely moveable joints Shoulder, knee, hip,
CHAPTER 9 JOINTS. Articulations - places of union between two or more bones.
Chapter 8 Anatomy & Physiology
Joints! 3 types of joints classified by function Diarthroses
Joints And I’m not talking about the illegal kind.
Articulations A. Joints (articulations) – wherever two bones meet
Joints Skeletal System - Part 3.
Mechanic of Movement Tissues and Structures Involved Types of Joints
COMMON COURSE OBJECTIVES:
Figure 8.1 Fibrous joints. Suture Syndesmosis Gomphosis
Joints (Articulations)
ARTICULATIONS Joints between bones Hold bones firmly to each other
Joints occur wherever two bones meet.
Joints Joint Fundamentals.
Presentation transcript:

Joints!  3 types of joints if we classify by function (i.e., by the degree of movement possible): 1.Diarthroses  Freely moveable joints  Shoulder, knee, hip, elbow, interphalangeal, tarsal, and carpal joints 2.Amphiarthroses  Slightly moveable joints  Intervertebral discs, costosternal joints, pubic symphysis 3.Synarthroses  Joints with little or no movement  Skull sutures, mental symphysis, teeth in sockets, 1 st costosternal joint.

Joint Classification  We can also classify joints by structure: 1.Synovial joints:  Bones separated by a joint cavity; lubricated by synovial fluid; enclosed in a fibrous joint capsule.  Shoulder, hip, elbow, knee, carpal, interphalangeal How would we classify these joints functionally?

Joint Classification 2.Fibrous joints:  Bones held together by collagenous fibers extending from the matrix of one bone into the matrix of the next.  No joint cavity  Skull sutures, teeth in joints, distal radioulnar joints & tibiofibular joints

Joint Classifications 3.Cartilaginous joints:  Bones held together by cartilage; no joint cavity  Epiphyseal plates of long bones, costosternal joints, pubic symphysis, intervertebral discs

Structure and Function  Joints are designed for their function.  Let’s look at sutures as our 1 st example:  Name 4 sutures!  What function do you suppose sutures are designed for?

Structure and Function  Let’s look at some symphyses.  What kind of joint is a symphysis? What kind of movement is possible?  Name a symphysis! (an obvious one is in the picture)  What connects the bones in these joints?

Structure and Function  Now let’s talk about synovial joints.  How do they differ from the previous 2?  5 main structural characteristics: 1.Articular cartilage  What kind of cartilage is it? (H _ _ _ _ _ _ )  Where do we find it?  What does it do?

Structure and Function 2.Articular capsule  2 layered. Surrounds both articular cartilages and the space btwn them.  External layer is made of dense irregular CT & is continuous w/ the perisoteum.  Inner layer is a synovial membrane made of loose connective tissue.  It covers all internal joint surfaces except for those areas covered by the articular cartilage.

Structure and Function 3.Joint (Synovial) Cavity  The potential space within the joint capsule and articular cartilage 4.Synovial Fluid  A small amount of slippery fluid occupying all free space w/i the joint capsule  Formed by filtration of blood flowing thru capillaries in the synovial membrane  Synovial fluid becomes less viscous as joint activity increases.

Structure and Function 5.Reinforcing Ligaments  What kind of tissue are they?  What do you suppose their function is?  Double-jointed-ness results from extra- stretchy ligaments and joint capsules. Is this necessarily a good thing?

Other Synovial Structures  The knee and hip joints have cushioning fatty pads btwn the fibrous capsule and the synovial membrane or bone.  Discs of fibrocartilage (i.e., menisci) which improve the fit btwn bone ends, thus stabilizing the joint.  Found in the knee, jaw, and sternoclavicular joint.  Bursae are basically bags of lubricant - fibrous membrane bags filled w/ synovial fluid. Often found where bones, muscles, tendons, or ligaments rub together.

Types of Synovial Joints 1.Plane joints  Articular surfaces are flat and allow short slipping or gliding movements.  Intercarpal and intertarsal joints 2.Hinge joints  A cylindrical projection of one bone fits into a trough- shaped surface on another (like a hotdog in a bun)  Movement resembles a door hinge.  Elbow joint – ulna and humerus; Interphalangeal joints

Type of Synovial Joints 3.Pivot joints  Rounded end of one bone protrudes into a ring formed by another bone or by ligaments of that bone.  Proximal radioulnar joint  Atlas-axial joint 4.Condyloid joints  Oval articular surface of one bone fits into a complementary depression on another.  Radiocarpal joints  Metacarpophalangeal joints

Types of Synovial Joints 5.Saddle joints  Each articular surface has convex and concave areas. Each articular surface is saddle- shaped.  Carpometacarpal joints of the thumbs. 6.Ball-and-Socket joints  Spherical or semi-spherical head of one bone articulates with the cuplike socket of another.  Allow for much freedom of motion.  Shoulder and hip joints.

The Knee  Largest and most complex diarthrosis in the body.  Primarily a hinge joint, but when the knee is flexed, it is also capable of slight rotation and lateral gliding.  Actually consists of 3 joints:  Patellofemoral joint  Medial and lateral tibiofemoral joints  The joint cavity is only partially enclosed by a capsule – on the medial, lateral, and posterior sides.

The Knee  The lateral and medial condyles of the femur articulate with the lateral and medial condyles of the tibia.  Btwn these structures, we have the lateral and medial menisci.  Anteriorly, the patellar ligament binds the tibia (where?) to the inferior portion of the patella. The superior portion of the patella is then connected to the quadriceps femoris muscle

The Knee  At least a dozen bursae are associated with the knee.  Multiple ligaments are present.  The fibular collateral ligament extends from the lateral epicondyle of the femur to the head of the fibula.  The tibial collateral ligament connects medial epicondyle of the femur to the medial condyle of the tibial shaft and is also fused to the medial meniscus.  Both of these ligaments prevent excessive rotation

The Knee  The anterior and posterior cruciate ligaments are also very important.  ACL connects the anterior intercondylar area of the tibia to the medial side of the lateral femoral condyle.  Prevents forward sliding of the tibia and hyperextension of the knee.  PCL connects the posterior intercondylar area of the tibia to the lateral side of the medial femoral condyle.  Prevents backward displacement of the tibia or forward sliding of the femur.

Clinical Conditions  Arthritis describes about 100 different types of inflammatory or degenerative joint diseases.  Osteoarthritis  Most common arthritis.  Normal joint use prompts the release of cartilage- damaging enzymes. If cartilage destruction exceeds cartilage replacement, we’re left with roughened, cracked, eroded cartilages.  Eventually bone tissue thickens and forms spurs that can restrict movement.  Most common in C and L spine, fingers, knuckles, knees, and hips.

Clinical Conditions  Rheumatoid arthritis  Chronic inflammatory disorder  Marked by flare-ups  Autoimmune disease.  Body creates antibodies which attack the joint surfaces  The synovial membrane can inflame and eventually thicken into a pannus – an abnormal tissue that clings to the articular cartilage.  The pannus erodes the cartilage and eventually scar tissue forms and connects the 2 bone ends. This scar tissue can later ossify, fusing the bones together. This is known as ankylosis.

 Gouty arthritis  When nucleic acids (such as ????) are metabolized uric acid is produced. Normally uric acid is excreted in the urine.  If blood [uric acid] rises due to decreased excretion or increased production, it may begin to form needle-shaped crystals in the soft tissues of joints.  Inflammation ensues causing painful arthritis. Clinical Conditions