Table of Contents 9.5 Some Basic Morphological Algorithm

Slides:



Advertisements
Similar presentations
In form and in feature, face and limb, I grew so like my brother
Advertisements

Document Image Processing
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
CDS 301 Fall, 2009 Image Visualization Chap. 9 November 5, 2009 Jie Zhang Copyright ©
Chapter 9: Morphological Image Processing
Some Basic Morphological Algorithm
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
DIGITAL IMAGE PROCESSING
Each pixel is 0 or 1, background or foreground Image processing to
图像处理技术讲座( 7 ) Digital Image Processing (7) 二值形态学 Binary morphology 顾 力栩 上海交通大学 计算机系
Morphological image processing – Part II
Introduction to Morphological Operators
Table of Contents Preview 9.1 Preliminaries 9.2 Erosion and Dilation
Morphological Image Processing Md. Rokanujjaman Assistant Professor Dept of Computer Science and Engineering Rajshahi University.
Provides mathematical tools for shape analysis in both binary and grayscale images Chapter 13 – Mathematical Morphology Usages: (i)Image pre-processing.
Digital Image Processing, 2nd ed. © 2002 R. C. Gonzalez & R. E. Woods Chapter 9 Morphological Image Processing Chapter 9 Morphological.
Morphology Structural processing of images Image Processing and Computer Vision: 33 Morphological Transformations Set theoretic methods of extracting.
Chapter 9 Morphological Image Processing. Preview Morphology: denotes a branch of biology that deals with the form and structure of animals and planets.
Morphological Image Processing Spring 2006, Jen-Chang Liu.
Course Website: Digital Image Processing Morphological Image Processing.
Morphological Image Processing
2007Theo Schouten1 Morphology Set theory is the mathematical basis for morphology. Sets in Euclidic space E 2 (or rather Z 2 : the set of pairs of integers)
E.G.M. PetrakisBinary Image Processing1 Binary Image Analysis Segmentation produces homogenous regions –each region has uniform gray-level –each region.
Digital Image Processing 3rd Edition
Digital Image Processing
Lecture 5. Morphological Image Processing. 10/6/20152 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of animals.
Morphological Image Processing
MATHEMATICAL MORPHOLOGY I.INTRODUCTION II.BINARY MORPHOLOGY III.GREY-LEVEL MORPHOLOGY.
Chapter 9.  Mathematical morphology: ◦ A useful tool for extracting image components in the representation of region shape.  Boundaries, skeletons,
Digital Image Processing CSC331
Course Syllabus 1.Color 2.Camera models, camera calibration 3.Advanced image pre-processing Line detection Corner detection Maximally stable extremal regions.
Digital Image Processing Chapter 9: Morphological Image Processing 5 September 2007 Digital Image Processing Chapter 9: Morphological Image Processing.
Digital Image Processing CCS331 Relationships of Pixel 1.
Morphological Image Processing
J. Shanbehzadeh M. Hosseinajad Khwarizmi University of Tehran.
Gianni Ramponi University of Trieste Images © 2002 Gonzalez & Woods Digital Image Processing Chapter 9 Morphological Image.
Chapter 3 cont’d. Binary Image Analysis. Binary image morphology (nonlinear image processing)
Digital Image Processing CSC331 Morphological image processing 1.
Mathematical Morphology Mathematical morphology (matematická morfologie) –A special image analysis discipline based on morphological transformations of.
DIGITAL IMAGE PROCESSING Instructors: Dr J. Shanbehzadeh Mostafa Mahdijo Mostafa Mahdijo ( J.Shanbehzadeh.
Digital Image Processing CSC331 Morphological image processing 1.
CS654: Digital Image Analysis Lecture 5: Pixels Relationships.
References Books: Chapter 11, Image Processing, Analysis, and Machine Vision, Sonka et al Chapter 9, Digital Image Processing, Gonzalez & Woods.
CS654: Digital Image Analysis
CDS 301 Fall, 2008 Image Visualization Chap. 9 November 11, 2008 Jie Zhang Copyright ©
EE 4780 Morphological Image Processing. Bahadir K. Gunturk2 Example Two semiconductor wafer images are given. You are supposed to determine the defects.
Image Processing and Analysis (ImagePandA)
1 Mathematic Morphology used to extract image components that are useful in the representation and description of region shape, such as boundaries extraction.
Morphological Image Processing Robotics. 2/22/2016Introduction to Machine Vision Remember from Lecture 12: GRAY LEVEL THRESHOLDING Objects Set threshold.
 Mathematical morphology is a tool for extracting image components that are useful in the representation and description of region shape, such as boundaries,
BYST Morp-1 DIP - WS2002: Morphology Digital Image Processing Morphological Image Processing Bundit Thipakorn, Ph.D. Computer Engineering Department.
Machine Vision ENT 273 Hema C.R. Binary Image Processing Lecture 3.
Lecture(s) 3-4. Morphological Image Processing. 3/13/20162 Introduction ► ► Morphology: a branch of biology that deals with the form and structure of.
Chapter 6 Skeleton & Morphological Operation. Image Processing for Pattern Recognition Feature Extraction Acquisition Preprocessing Classification Post.
Morphological Image Processing (Chapter 9) CSC 446 Lecturer: Nada ALZaben.
Morphological Image Processing
7.1 Morfologi untuk Pengolahan Citra : Thickening, Skeleton
COMP 9517 Computer Vision Binary Image Analysis 4/15/2018
CSE 554 Lecture 2: Shape Analysis (Part I)
Digital Image Processing CP-7008 Lecture # 09 Morphological Image Processing Fall 2011.
CSE 554 Lecture 1: Binary Pictures
HIT and MISS.
Morphological Operations
CS Digital Image Processing Lecture 5
Binary Image processing بهمن 92
Dilation The basic morphological operations applied to either grayscale or binary images are Erosion and Dilation. Erosion shrinks image objects while.
Closing One of the important morphological operations applied to either grayscale or binary images is Closing. It is derived from the fundamental operations.
Morphological Image Processing
CS654: Digital Image Analysis
Morphological Filters Applications and Extension Morphological Filters
Presentation transcript:

DIGITAL IMAGE PROCESSING Chapter 9 – Morphological Image Processing J. Shanbehzadeh S.S.Nobakht Khwarizmi University of Tehran

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Erosion 2 (B)z = {c | c = b + z, for b є B} Erosion

Boundary Extraction

Boundary Extraction

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Dilation 6 (B)z = {c | c = b + z, for b є B} Dilation

Hole Filling

Hole Filling

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Extraction of Connected Components

Extraction of Connected Components تصویر سینه مرغ حاوی استخوان هایی است. تصویر اشعه ایکس است. ابتدا تصویر را باینری کرده ایم. سپس با استفاده از Connected Component عناصر با سایز کوچکتر از 5*5 را حذف کرده ایم. چون عناصر بزرگتر از این سایز برای ما اهمیت دارند.

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

The Hit-or-Miss Transformation Convex Hull Closing Opening Dilation Erosion The Hit-or-Miss Transformation

Convex Hull Convex Concave تفاوت پوسته محدب و مجموعه اصلی را نقصان محدب S می نامند که برای توصیف اشیاء مهم بوده و در فصل Segmentation مورد بررسی قرار می گیرد.

Convex Hull

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Thinning

Thinning

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Thickening where B is a structuring element suitable for thickening. As in thinning. thickening can be defined as a sequential operation: The structuring elements used for thickening have the same form as those shown in Fig. 9.2l(a). but with all 1s and 0s interchanged. However, a separate algorithm for thickening is seldom used in practice. Instead, the usual procedure is to thin the background of the set in question and then complement the result. In other words. to thicken a set A. we form C = AC, thin C, and then form C C. Figure 9.22 illustrates this procedure. Depending on the nature of A. this procedure can result in disconnected points, as Fig. 9.22(d) shows. Hence thickening by this method usually is followed by postprocessing to remove disconnected points Note from Fig. 9.22(c) that the thinned background forms a boundary for the thickening process This useful feature is not present in the direct implementation of thickening using Eq. (9.5-I0). and it is one of the principal reasons for using background thinning to accomplish thickening.

Thickening

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Skeleton Skeleton

Applications Simplify a shape by pruning its skeleton:

Skeletons Skeletonization is a process for reducing foreground regions in a binary image to a skeletal remnant that largely preserves the extent and connectivity of the original region while throwing away most of the original foreground pixels. How this works: imagine that the foreground regions in the input binary image are made of some uniform slow-burning material. Light fires simultaneously at all points along the boundary of this region and watch the fire move into the interior. At points where the fire traveling from two different boundaries meets itself, the fire will extinguish itself and the points at which this happens form the so called `quench line'. This line is the skeleton.

Skeleton of a rectangle defined in terms of bi-tangent circles. Skeletons Skeleton of a rectangle defined in terms of bi-tangent circles.

Skeletons The skeleton/MAT can be produced in two main ways. 1. to use some kind of morphological thinning that successively erodes away pixels from the boundary (while preserving the end points of line segments) until no more thinning is possible, at which point what is left approximates the skeleton. 2. to calculate the distance transform of the image. The skeleton then lies along the singularities (i.e. creases or curvature discontinuities) in the distance transform.

The Hit-or-Miss Transformation Dilation Erosion Closing Opening The Hit-or-Miss Transformation

Skeletons Opening Erosion Fig. 9.23 shows a skeleton S(A) of a set A. (a) lf z is a point of S(A) and (D)z is the largest disk cantered at z and contained in A. one cannot find a larger disk (not necessarily centered at z) containing (D)z and included in A. The disk (D)z is called a maximum disk. (b) The disk (D)Z touches the boundary of A at two or more different places. Erosion Opening

Skeletons

Skeletons

Distance Transform The distance transform of a simple shape. Note that we are using the `chessboard' distance metric. The distance transform is an operator normally only applied to binary images. The result of the transform is a graylevel image that looks similar to the input image, except that the graylevel intensities of points inside foreground regions are changed to show the distance to the closest boundary from each point.

Distance Transform

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Pruning https://reference.wolfram.com/mathematica/ref/Pruning.html

Pruning Iteratively prune an image: https://reference.wolfram.com/mathematica/ref/Pruning.html

Applictions Count the legs of a centipede Find the loops of a graph: https://reference.wolfram.com/mathematica/ref/Pruning.html

Applictions Solve a maze puzzle by thinning all paths and pruning dead ends: https://reference.wolfram.com/mathematica/ref/Pruning.html

The Hit-or-Miss Transformation Pruning Thinning The Hit-or-Miss Transformation

The Hit-or-Miss Transformation Pruning Thinning The Hit-or-Miss Transformation Dilation H = 3x3 structuring element of 1’s

Pruning

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Table of Contents 9.5 Some Basic Morphological Algorithm 9.5.1 Boundary Extraction 9.5.2 Hole Filling 9.5.3 Extraction of Connected Components 9.5.4 Convex Hull 9.5.5 Thinning 9.5.6 Thickening 9.5.7 Skeletons 9.5.8 Pruning 9.5.9 Morphological Reconstruction 9.5.10 Summary of Morphological Operations on Binary Images

Morphological Operations on Binary Images

Morphological Operations on Binary Images

Morphological Operations on Binary Images