General & Special Senses

Slides:



Advertisements
Similar presentations
Sensory Reception Chapter 31.
Advertisements

The Sensory System 9 Chapter
By: Kelley Tang & Bobbi Westendorf
Chapter 22 Human Senses.
The Special Senses Chapter 15.
Special Senses.
Bell Activity Turn to Chapter 8: Special Senses Complete the worksheet
Jeopardy ReceptorsStructures of the Eye Smell and Taste The Ear Surprise Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy.
Biology, 9th ed, Sylvia Mader
Anatomy & Physiology Special Senses.
The General & Special Senses
Essential questions What are the structures of the sensory system? 3.03 Remember the structures of the sensory system2.
Presented by Kami Dykes. Receptors and Somatic Senses 1.___ are receptors that are sensitve to changes in the concentrations of chemicals. 2.Whenever.
Special Senses.
Somatic and special senses
 Sensory Receptors - detect environmental changes and trigger nerve impulses  Somatic Senses  Touch, pressure, temperature, pain  Special Senses 
Sensation Overview 1. Specialized sensory cell (receptor) detects a physical or chemical change. 2. The physical or chemical change causes action potentials.
Senses: Chapter 10.
Chapter 10 Review Mrs. Chirichella. This portion of the outer tunic is referred to as the “white of the eye”. sclera Know the location and function of.
Sense Organs.
Sight Hearing Taste Smell Touching
SPECIAL SENSES.
1 Somatic and Special Senses Chapter 10 Bio Introduction Sensory receptors detect changes in the environment and stimulate neurons to send nerve.
Sensory Mechanisms.
SENSES Sensory Receptors - detect environmental changes and trigger nerve impulses - somatic senses (touch, pressure, temp, pain) - special senses (smell,
The General & Special Senses
The Senses.
Special Senses. Olfactory (Smell) Receptors Pathways Discrimination.
Chapter 9 The General and Special Senses. Sensory System Sensory system allows us to experience the world – External information – Internal information.
© 2014 Pearson Education, Inc. Human Biology Concepts and Current Issues Seventh Edition Michael D. Johnson Lecture Presentations by Robert J. Sullivan.
The General & Special Senses Chapter 18. Introduction Senses – our perception of what is “out there” 2 groups –General senses –Special senses.
The Retina Retina is a delicate tissue composed of two layers Sensory layer contains photoreceptors (rods and cones) that sense light Sensory layer consists.
The Senses. Introduction Sensory receptors detect environmental changes and trigger nerve impulses that travel on sensory pathways. The body reacts with.
The General & Special Senses
CHAPTER 14 THE SENSES RECEPTORS RECEIVE INFORMATION AND SEND IT TO THE BRAIN FOR PROCESSING.
Essentials of Human Anatomy
SENSES Sensory Receptors - detect environmental changes and trigger nerve impulses - somatic senses (touch, pressure, temp, pain) - special senses (smell,
Anatomy & Physiology Ch. 8: Special Senses. The somatic senses are receptors associated with touch, pressure, temperature & pain The special senses are.
SENSES PART 2.  Tunics of the eye:  Fibrous Tunics  Sclera  Cornea  Vascular Tunics  Choroid  Iris  Ciliary Body  Nervous Tunic  Retina ANATOMY.
CHAPTER 13 THE SENSES RECEPTORS RECEIVE INFORMATION AND SEND IT TO THE BRAIN FOR PROCESSING.
Special Senses Chapter 17. The Special Senses Smell, taste, vision, hearing and equilibrium Housed in complex sensory organs Ophthalmology is science.
Chapter 10.  Sensory receptors sense changes in their surroundings.
The Senses Chapter 35.4.
Sensory Mechanisms.
1 Special Senses sensory receptors are within large, complex sensory organs in the head smell in olfactory organs taste in taste buds hearing and equilibrium.
THE SENSES PGS Chapter 35 Section 4. Objectives _______________ the five types of sensory receptors ______________ the five sense organs Name.
Slide 0 Copyright © Mosby Inc. All Rights Reserved. Chapter 9 The Senses.
Essentials of Human Anatomy Essentials of Human Anatomy Dr Fadel Naim Ass. Prof. Faculty of Medicine IUG Special Senses.
Chapter 13 Senses.
The Senses Sensory Receptors on sensory neurons Sensation perception that occurs when brain interprets sensory impulse.
Sensory System Chapter 9.
Special Senses Eye and Ear.
The Sense Organs. Humans react to both internal and external stimuli – we can detect these stimuli because our bodies contain several types of sensory.
Sensory Organs. Lesson 13-1 Objectives State the functions of the sensory system. Define the five types of sensory receptors. Describe the four components.
PowerLecture: Chapter 35 Sensory Perception. Sensory Receptors Convert energy of a stimulus into action potentials MechanoreceptorsThermoreceptors Pain.
Chapter 14 The Senses.
Sensory Systems. Nerve cells identify particular stimuli, depending on their type. Neurons carry signal to brain where it is decoded. The brain uses information.
SENSES Sensory Receptors - detect environmental changes and trigger nerve impulses somatic senses (touch, pressure, temp, pain) - special senses (smell,
© 2009 The McGraw-Hill Companies, Inc. All rights reserved.
Senses.
A.3 Perception of Stimuli
Chapter 14 The Senses.
Senses A particular sensitivity to a distinct environmental change
Sensory  Systems  .
Special senses Chapter 10.
The Senses.
The Sensory System.
The Sense Organs.
NERVOUS SYSTEM III SENSES.
35–4 The Senses Objectives: Name the five types of sensory receptors.
Presentation transcript:

General & Special Senses Lecture 7 Chapter 9

X. The Sensory System A. Introduction 1. Receptors detect environmental changes and stimuli. 2. Different receptors are sensitive to and receive different sensory stimuli. a. Chemoreceptors – medulla in the lower brain stem, aortic and carotid bodies detect O2, CO2, and H+ levels in the blood. Receptors of the small intestine detect H+ levels in the lumen. b. Pain receptors – located in the skin and internal organs. c. Thermoreceptors – sense heat (temperature) in the skin and control body temperature in the hypothalmus of the brain. d. Mechanoreceptors – sense stretch and pressure within the skin, muscles, and joints. e. Photoreceptors – light sensitive neurons in the retina of the eye.

3. Sensation a. Sensations are feelings resulting from sensory stimulation. b. A particular part of the sensory cortex always interprets impulses reaching it in the same way. c. The brain projects a sensation back to the region of stimulation. 4. Sensory adaptations are adjustments made by sensory receptors to continuous stimulation in which impulses are triggered at slower and slower rates. B. Pain receptors 1. Pain receptors are free nerve endings stimulated by tissue damage. 2. The only receptors in visceral organs that provide sensation are pain receptors, (visceral pain). 3. The sensations produced from visceral receptors are likely to feel as if they are coming from some other part or location. This is called “referred” pain.

4. Somatic pain originates in the skin, skeletal muscles, joints and tendons. 5. Stimulated nerve fibers from amputated limbs can tend to result in “phantom pain”. 6. Pain experience has two components: pain stimulus and reaction to pain stimulus which determines the amount of suffering.

C. Sense of Smell (Olfaction) 1. Olfactory organs a. The olfactory organs consist of receptors and supporting cells in the nasal cavity. b. Olfactory receptors are neurons with cilia that are sensitive to gaseous/dissolved chemicals. c. Nerve impulses travel from the olfactory receptors through the olfactory nerves, olfactory bulbs, and olfactory tracts to interpreting centers in the olfactory portion of the cerebral cortex. You perceive odors (smells) in your brain! 2. Olfactory stimulation a. Olfactory impulses may result when various gaseous molecules combine with specific binding sites on the cilia of the receptor cells. b. Olfactory receptors adapt rapidly.

D. Sense of Taste 1. Taste receptors a. Taste buds consist of receptor cells and supporting cells located in papillae on the tongue. b. Taste cells have taste hairs that are sensitive to particular chemicals dissolved in water. c. Taste hair surfaces seem to have receptor sites to which chemicals combine. 2. Taste sensation (gustation) a. The five primary taste sensations are: sweet, sour, salty, bitter, and umami. b. Various taste sensations result from the stimulation of one or more sets of taste receptors. c. Much of taste also involves the sense of smell.

E. Sense of Hearing 1. The external ear composed of three parts collects sound waves created by vibrating objects. a. The visible “ear” that collects and directs sound is the auricle or pinna. b. The external auditory meatus directs sound into the skull. c. The tympanic membrane vibrates to begin the conversion of sound energy to mechanical energy. 2. Middle ear (air filled space) a. The three auditory ossicles, (malleus, incus, & stapes) of the middle ear conduct and multiply the energy of vibration to the oval window of the inner ear. b. Eustachian tubes connect the middle ear to the throat and function to help maintain equal air pressure on both sides of the eardrums so they are free to vibrate in response to sound.

3. Inner ear a. The inner ear consists of a complex system of interconnected tubes and chambers, the osseous (bony) filled with perilymph, and membranous (membrane) labyrinths filled with endolymph. b. The organ of Corti contains the hearing receptors (hair cells) that are stimulated by vibrations in the fluids of the inner ear. c. Different frequencies of vibrations are thought to stimulate different receptor hair cells. 4. Steps in hearing: a. Sound waves collected by auricle (pinna) b. Waves pass through External Auditory Meatus c. Tympanic Membrane vibrates d. Malleus connected on the medial side of Tympanic Membrane moves. e. Malleus moves the incus f. Incus moves the stapes g. Stapes pushes on the oval window. Movement of stapes is 20 times greater than that of the Tympanic Membrane

h. Perilymph in Scala Vestibuli moves i. Perilymph wave energy causes the Basilar Membrane in the cochlear duct to move up and down. j. Organ of Corti hair cells within the cochlear duct (containing endolymph) move up and down k. Hair cells touch the Tectorial Membrane l. Hairs bend and send nerve impulses down the cochlear branch of the Vestibulocochlear Nerve to the temporal lobe of the cerebrum. m. Different frequencies cause different regions of the Basilar Membrane to vibrate causing different regions of Organ of Corti hair cells to be stimulated = perception of different frequencies. o. Movement of perilymph in the Scala Vestibuli goes to the end of the cochlea and moves the perilymph in the Scala Tympani which pushes on the Round Window so the wave energy is lost, hearing stops.

F. Sense of Equilibrium 1. Static equilibrium is concerned with maintaining the stability of the head and body when these parts are motionless.

2. Dynamic equilibrium is concerned with balancing the head and body when they are moved or rotated suddenly. Sensory organs of dynamic equilibrium are located in the Semicircular canals.

3. Other parts that help with the maintenance of equilibrium include the eyes and mechanoreceptors associated with certain joints called proprioceptors. G. Sense of Sight 1. Visual accessory organs include the eyelids, lacrimal apparatus (lacrimal gland produces tears, Nasolacrimal duct drains the eye to the nasal cavity), and extrinsic muscles to move the eye.

2. Structure of the Eye a. The wall of the eye has an outer, middle, and inner layer that functions as follows: 1.) The outer white layer (sclera) is fibrous, protective, and shapes the eye. Its transparent anterior portion (cornea) protects and refracts (bends) light entering the eye. Astigmatism is blurry vision in parts of the visual field caused by unequal curvatures “waviness” in the cornea. 2.) The middle layer (choroid) is the vascular layer and contains a brown pigment that helps to absorb light to avoid visual confusion. 3.) the inner layer (retina) contains the visual receptor cells b. The lens is a transparent, elastic structure whose shape is controlled by the action of the ciliary muscles that are part of the ciliary body. The lens changes shape to refract light. c. The iris is a muscular diaphragm that controls the amount of light entering the eye. The pupil is the hole in the middle of the iris.

d. Spaces within the eye are filled with fluids that help to maintain the shape of the eye. 1.) Anterior cavity (in front of the lens) is filled with aqueous humor 2.) Posterior cavity (larger and behind the lens) is filled by vitreous humor. 3. Refraction of light a. Light waves are refracted primarily by the cornea and lens. b. The lens must be thickened (accommodation) to focus on objects closer than 20 feet away by use of the ciliary muscles. 4. Visual receptors a. The visual receptors are called rods and cones 1.) Rods (more sensitive to low light) provide black & white vision that is poor in detail 2.) Cones require higher intensity light to provide highly detailed color vision.

b. Visual pigments 1.) A light-sensitive pigment in rods decomposes in the presence of light to trigger nerve impulses that our visual cortex perceives as vision 2.) Color vision seems to be related to the presence of three sets of cones (blue, green, red) containing different light-sensitive pigments. Cones are most highly concentrated at the Macula Lutea of the retina. This is the area of most acute color vision and light hits it when you look directly at objects. 5. Stereoscopic vision a. Stereoscopic vision involves the perception of distance and depth (depth perception) b. Stereoscopic vision occurs because of the formation of two slightly different retinal images that the brain superimposes and interprets as one image in three dimensions

6. Visual nerve pathways a. Nerve fibers from the retina form the optic nerves. Nerve fibers exit the back of the eye at the optic disc causing the “blind spot”. Because nerve fibers fill this area, no cones or rods are present. b. Some nerve fibers from each eye cross over in the optic chiasm. This ensures that all areas of the visual field perceived by both eyes are processed by one side of the brain into a coherent image.

a. If elongate (too long): 7. Shape of the eyeball a. If elongate (too long): 1.) The focus point of the image is in front of the retina, the image that hits the retina is out of focus. 2.) This is Myopia “short sighted vision” you can’t see far away so you are described as being “nearsighted”. b. If eyeball is (too short): 1.) The focus point of the image occurs past (behind) the retina so the image that hits the retina is out of focus. 2.) This is hyperopia “farsightedness” You can’t see close objects!

8. Aging a. As you get older the lens gets harder and will not thicken as or accommodate as much for close vision. This is usually corrected by glasses or contact lenses.