Target Tracking in Sensor Networks 17 th Oct 2005 Presented By: Arpit Sheth.

Slides:



Advertisements
Similar presentations
TARGET DETECTION AND TRACKING IN A WIRELESS SENSOR NETWORK Clement Kam, William Hodgkiss, Dept. of Electrical and Computer Engineering, University of California,
Advertisements

Distributed Algorithms for Mobile Sensor Networks Chelsea Sanders Ben Tullis.
V-1 Part V: Collaborative Signal Processing Akbar Sayeed.
Coverage in Wireless Sensor Network Phani Teja Kuruganti AICIP lab.
SELF-ORGANIZING MEDIA ACCESS MECHANISM OF A WIRELESS SENSOR NETWORK AHM QUAMRUZZAMAN.
Bidding Protocols for Deploying Mobile Sensors Reporter: Po-Chung Shih Computer Science and Information Engineering Department Fu-Jen Catholic University.
Maximum Battery Life Routing to Support Ubiquitous Mobile Computing in Wireless Ad Hoc Networks By C. K. Toh.
Decentralized Reactive Clustering in Sensor Networks Yingyue Xu April 26, 2015.
Fault-Tolerant Target Detection in Sensor Networks Min Ding +, Dechang Chen *, Andrew Thaeler +, and Xiuzhen Cheng + + Department of Computer Science,
Sensor Network 教育部資通訊科技人才培育先導型計畫. 1.Introduction General Purpose  A wireless sensor network (WSN) is a wireless network using sensors to cooperatively.
Sec-TEEN: Secure Threshold sensitive Energy Efficient sensor Network protocol Ibrahim Alkhori, Tamer Abukhalil & Abdel-shakour A. Abuznied Department of.
Fast and Reliable Estimation Schemes in RFID Systems Murali Kodialam and Thyaga Nandagopal Bell Labs, Lucent Technologies.
1 Routing Techniques in Wireless Sensor networks: A Survey.
Nov 4, Detection, Classification and Tracking of Targets in Distributed Sensor Networks Presented by: Prabal Dutta Dan Li, Kerry Wong,
1 Prediction-based Strategies for Energy Saving in Object Tracking Sensor Networks Yingqi Xu, Wang-Chien Lee Proceedings of the 2004 IEEE International.
Haiyun Luo, Fan Ye, Jerry Cheng, Songwu Lu, Lixia Zhang
Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks Wei-Peng Chen*, Jennifer C. Hou and Lui Sha Department of Computer Science.
Differentiated Surveillance for Sensor Networks Ting Yan, Tian He, John A. Stankovic CS294-1 Jonathan Hui November 20, 2003.
On Reducing Communication Cost for Distributed Query Monitoring Systems. Fuyu Liu, Kien A. Hua, Fei Xie MDM 2008 Alex Papadimitriou.
1 Prediction-based Strategies for Energy Saving in Object Tracking Sensor Networks Tzu-Hsuan Shan 2006/11/06 J. Winter, Y. Xu, and W.-C. Lee, “Prediction.
Deployment Strategies for Differentiated Detection in Wireless Sensor Network Jingbin Zhang, Ting Yan, and Sang H. Son University of Virginia From SECON.
A Hierarchical Energy-Efficient Framework for Data Aggregation in Wireless Sensor Networks IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 55, NO. 3, MAY.
Scalable Information-Driven Sensor Querying and Routing for ad hoc Heterogeneous Sensor Networks Maurice Chu, Horst Haussecker and Feng Zhao Xerox Palo.
Online Data Gathering for Maximizing Network Lifetime in Sensor Networks IEEE transactions on Mobile Computing Weifa Liang, YuZhen Liu.
Collaborative Signal Processing CS 691 – Wireless Sensor Networks Mohammad Ali Salahuddin 04/22/03.
Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Network Wei-Peng Chen, Jennifer C. Hou, Lui Sha Presented by Ray Lam Oct 23, 2004.
1 Fault Tolerance in Collaborative Sensor Networks for Target Detection IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 3, MARCH 2004.
SensEye: A Multi-Tier Camera Sensor Network by Purushottam Kulkarni, Deepak Ganesan, Prashant Shenoy, and Qifeng Lu Presenters: Yen-Chia Chen and Ivan.
Fast and Reliable Estimation Schemes in RFID Systems Murali Kodialam and Thyaga Nandagopal Bell Labs, Lucent Technologies Presented by : Joseph Gunawan.
Sensor Coordination using Role- based Programming Steven Cheung NSF NeTS NOSS Informational Meeting October 18, 2005.
Energy Saving In Sensor Network Using Specialized Nodes Shahab Salehi EE 695.
Tracking Mobile Sensor Nodes in Wildlife Francine Lalooses Hengky Susanto EE194-Professor Chang.
Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Network Wei-Peng Chen, Jennifer C. Hou, Lui Sha.
Multimedia & Networking Lab
A novel gossip-based sensing coverage algorithm for dense wireless sensor networks Vinh Tran-Quang a, Takumi Miyoshi a,b a Graduate School of Engineering,
College of Engineering Non-uniform Grid- based Coordinated Routing Priyanka Kadiyala Major Advisor: Dr. Robert Akl Department of Computer Science and Engineering.
Location Centric Distributed Computation and Signal Processing Parmesh Ramanathan University of Wisconsin, Madison Co-Investigators:A. Sayeed, K. K. Saluja,
Energy-Aware Scheduling with Quality of Surveillance Guarantee in Wireless Sensor Networks Jaehoon Jeong, Sarah Sharafkandi and David H.C. Du Dept. of.
Patch Based Mobile Sink Movement By Salman Saeed Khan Omar Oreifej.
Maximum Network Lifetime in Wireless Sensor Networks with Adjustable Sensing Ranges Cardei, M.; Jie Wu; Mingming Lu; Pervaiz, M.O.; Wireless And Mobile.
ENERGY-EFFICIENT FORWARDING STRATEGIES FOR GEOGRAPHIC ROUTING in LOSSY WIRELESS SENSOR NETWORKS Presented by Prasad D. Karnik.
Detection, Classification and Tracking in a Distributed Wireless Sensor Network Presenter: Hui Cao.
1 Collaborative Processing in Sensor Networks Lecture 2 - Mobile-agent-based Computing Hairong Qi, Associate Professor Electrical Engineering and Computer.
1 Collaborative Processing in Sensor Networks Lecture 5 - Visual Coverage Hairong Qi, Associate Professor Electrical Engineering and Computer Science University.
An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks Seema Bandyopadhyay and Edward J. Coyle Presented by Yu Wang.
Selection and Navigation of Mobile sensor Nodes Using a Sensor Network Atul Verma, Hemjit Sawant and Jindong Tan Department of Electrical and Computer.
REECH ME: Regional Energy Efficient Cluster Heads based on Maximum Energy Routing Protocol Prepared by: Arslan Haider. 1.
Probabilistic Coverage in Wireless Sensor Networks Authors : Nadeem Ahmed, Salil S. Kanhere, Sanjay Jha Presenter : Hyeon, Seung-Il.
Efficient Energy Management Protocol for Target Tracking Sensor Networks X. Du, F. Lin Department of Computer Science North Dakota State University Fargo,
ELECTIONEL ECTI ON ELECTION: Energy-efficient and Low- latEncy sCheduling Technique for wIreless sensOr Networks Shamim Begum, Shao-Cheng Wang, Bhaskar.
Copyright © 2011, Scalable and Energy-Efficient Broadcasting in Multi-hop Cluster-Based Wireless Sensor Networks Long Cheng ∗ †, Sajal K. Das†,
Shibo He 、 Jiming Chen 、 Xu Li 、, Xuemin (Sherman) Shen and Youxian Sun State Key Laboratory of Industrial Control Technology, Zhejiang University, China.
Wireless sensor and actor networks: research challenges
Detection, Classification and Tracking in Distributed Sensor Networks D. Li, K. Wong, Y. Hu and A. M. Sayeed Dept. of Electrical & Computer Engineering.
Adaptive Triangular Deployment Algorithm for Unattended Mobile Sensor Networks Ming Ma and Yuanyuan Yang Department of Electrical & Computer Engineering.
SenSys 2003 Differentiated Surveillance for Sensor Networks Ting Yan Tian He John A. Stankovic Department of Computer Science, University of Virginia November.
A Protocol for Tracking Mobile Targets using Sensor Networks H. Yang and B. Sikdar Department of Electrical, Computer and Systems Engineering Rensselaer.
Ben Miller.   A distributed algorithm is a type of parallel algorithm  They are designed to run on multiple interconnected processors  Separate parts.
Toward Reliable and Efficient Reporting in Wireless Sensor Networks Authors: Fatma Bouabdallah Nizar Bouabdallah Raouf Boutaba.
On Mobile Sink Node for Target Tracking in Wireless Sensor Networks Thanh Hai Trinh and Hee Yong Youn Pervasive Computing and Communications Workshops(PerComW'07)
Efficient Placement and Dispatch of Sensors in a Wireless Sensor Network You-Chiun Wang, Chun-Chi Hu, and Yu-Chee Tseng IEEE Transactions on Mobile Computing.
Energy-Aware Target Localization in Wireless Sensor Networks Yi Zou and Krishnendu Chakrabarty IEEE (PerCom’03) Speaker: Hsu-Jui Chang.
KAIS T Sensor Deployment Based on Virtual Forces Reference: Yi Zou and Krishnendu Chakarabarty, “Sensor Deployment and Target Localization Based on Virtual.
1 Power Efficient Monitoring Management in Sensor Networks A.Zelikovsky Georgia State joint work with P. BermanPennstate G. Calinescu Illinois IT C. Shah.
Repairing Sensor Network Using Mobile Robots Y. Mei, C. Xian, S. Das, Y. C. Hu and Y. H. Lu Purdue University, West Lafayette ICDCS 2006 Speaker : Shih-Yun.
KAIS T Location-Aided Flooding: An Energy-Efficient Data Dissemination Protocol for Wireless Sensor Networks Harshavardhan Sabbineni and Krishnendu Chakrabarty.
How to minimize energy consumption of Sensors in WSN Dileep Kumar HMCL 30 th Jan, 2015.
Presented by: Chaitanya K. Sambhara Paper by: Rahul Gupta and Samir R. Das - Univ of Cincinnati SUNY Stony Brook.
In the name of God.
Net 435: Wireless sensor network (WSN)
Presentation transcript:

Target Tracking in Sensor Networks 17 th Oct 2005 Presented By: Arpit Sheth

Introduction One of the most important applications of sensors is target tracking. Each node can sense in multiple modalities such as acoustic, seismic and infrared. The type of signals to be sensed are determined by the objects to be tracked.

Many challenges must be overcome before using sensor networks for tracking. Two critical areas are: 1. Efficient Networking Techniques 2. Because the data collected by the sensors may be redundant, correlated and/or inconsistent, it is desirable to have sensors collaborate on processing data and transporting a concise digest to subscribers.

Objectives to be satisfied: 1. Collaborative Signal Processing (CSP) 2. Distributive processing 3. Goal oriented, on-demand processing 4. Information fusion 5. Multi-resolution processing

1. Collaborative Signal Processing (CSP) To facilitate detection, identification and tracking of targets, global information in both time and space must be collected and analyzed over a specified space-time region. However individual nodes provide spatially local information only CSP provides data representation and control mechanisms to collaboratively process and store sensor information, respond to external events and report results.

2. Distributive processing Raw signals are sampled and processed at individual nodes but are not directly communicated over the wireless channel. Instead each node extracts relevant summary statistics from the raw signal, which are typically smaller in size. The summary statistics are stored locally in individual nodes and may be transmitted to other nodes upon request.

3. Goal oriented, on-demand processing To conserve energy, each node should perform signal processing tasks that are relevant to the current query. In the absence of a query, each node should retreat into a standby mode to minimize energy consumption. A sensor node should not automatically publish extracted information, but should forward information only when needed.

4. Information fusion To infer global information over a certain space-time region, CSP must facilitate efficient hierarchical information fusion. High bandwidth time series data must be shared between neighboring nodes for classification purposes. Lower bandwidth data may be exchanged between more distant nodes for tracking purposes.

5. Multi-resolution processing Depending on the nature of the query, some CSP tasks may require higher spatial resolution involving a finer sampling of sensor nodes, or higher temporal resolution involving higher sampling rates. Example: Reliable detection is achievable with relatively coarse space-time resolution, whereas classification typically requires higher resolution. Multiresolution space-time processing should be fruitfully exploited in this context.

Efficient sensor placement for tracking [5] Placement of sensors in the surveillance zone is an important issue in the design of these networks. Several types of sensors are available which differ from each other in their monitoring range, detection capabilities and cost Sensors which can accurately detect targets at longer distances have higher cost, but a few number of these are required for effective surveillance If low cost, small range sensors are used, effective surveillance can be achieved with a large no. of these sensors

If the sensor field is represented as a grid, target location refers to the problem of pinpointing a target at a grid point at any point in time. The target location can be simplified considerably if the sensors are placed in such a way that every grid point is covered by a unique subset of sensors.

Sensor placement problem: Given a surveillance region (grid points) and sensors of different types, determine the placement and type of sensors in the sensor field such that the desired coverage is achieved and the cost is minimized. How do we solve this problem? We formulate the problem in terms of cost minimization under coverage constraints.

Minimum Cost Sensor Placement: Let the sensor field consist of n x, n y, n z grid points in the x, y and z dimensions. We assume two types of sensors (Type A and Type B) are available for deployment, with costs C A and C B and ranges R A and R B The separation between the grid points in any dimension is at least min{ R A, R B } Another assumption that the sensor always detects a target that lies within its range

A sensor with range R A (R B ) placed on a grid point (x 1,y 1,z 1 ) can detect a target at grid point (x 2,y 2,z 2 ), if the distance between these two points is less than R A (R B ). Every grid point must be covered by at least m>=1 sensors. The parameter m measures the amount of fault tolerance inherent in the deployment scheme. The optimization problem: Given a parameter m>=1, a set of grid points, two types of sensors with respective costs and ranges, find an assignment of sensors to grid points such that every grid point is covered by at least m sensors and the total cost is minimum

Solution: Let a ijk be a binary variable defined as : a ijk = 1 : if A type sensor is placed at grid point (i,j,k) 0 : otherwise Likewise, b ijk = 1 : if B type sensor is placed at grid point (i,j,k) 0 : otherwise The total cost C of sensor deployment is given by:

Let cov A (( i 1, j 1, k 1 ),( i 2, j 2, k 2 )) be a binary variable defined as follows: cov A (( i 1, j 1, k 1 ),( i 2, j 2, k 2 )) = 1: if type A sensor placed at grid point (i 1,j 1,k 1 ) covers grid point (i 2,j 2,k 2 ) 0: otherwise Similarly it can be defined for type B sensor. cov B (( i 1, j 1, k 1 ),( i 2, j 2, k 2 )) = 1: if type B sensor placed at grid point (i 1,j 1,k 1 ) covers grid point (i 2,j 2,k 2 ) 0: otherwise

Objective : Minimize the cost function Subject to: Drawback: Case d = R A not considered and and assumed that range is an integer and distance is not.

Important Conclusions from the Case Study: 1. As the value of m increases, it is more economical to use Type B sensor as it costs 1.5 times more, it has the range that is twice that of Type A sensor. 2. This model takes an excessive amount of time for larger problem instances. Therefore, a ‘divide and conquer’ near optimal approach should be adopted when no. of grid points is very large.(>50)

Dual Space Approach to tracking [3] This approach is used to track the edge of a shadow. It is based on the dual space principle in Computational Geometry Dual Space Transformation: -A line in the primal space y=α.x+β is represented by a single point (-α,β) in another space (called the dual space) -Similarly a point in the primal space (a,b) uniquely defines a line in the dual space :φ=a.θ+b.

Properties: 1. In the primal space, if a point (a,b) is on a line y = α.x+β, then in the dual space, the corresponding line φ=a.θ+b does through the corresponding point (-α,β), and vice versa. 2. If a point in the primal space is above a line, then in the dual space, the corresponding line is above the corresponding point

S1 S2 S3 S4 Y X S1 S2 S3 S4 Movement of the shadow line in the primal space Movement of the corresponding point in the dual space

Performance Evaluation: 1. The expected number of lines bounding a cell is four independent of the overall no. of sensors present. Thus, the no. of sensors active at a given time is very small which leads to energy savings. 2. More the no. of sensors, smaller the size of cells, more accurate our estimation of shadows. 3. Assumption was made during testing that no two motes were crossed at the same moment as they led to RF collisions. 4. Tracking more complicated shadows is difficult and does not lead to accurate estimations.

Detecting convex shadows through sensor node clustering

Distributed Prediction Tracking (DPT) [6] Assumptions: 1. The Cluster Head has following information about all the sensors within the cluster: Sensor Identity, Location and Energy Level 2. All sensors have same characteristics. 3. Sensors are randomly distributed across the entire area with uniform density 4. Each sensor has two sensing radii: Low Beam (default) and High Beam (turned on only when necessary). 5. In order to provide accurate information, there should be atleast 3 sensors to sense the target jointly.

DPT distinguishes between border and non-border sensors. Border sensors are required to keep sensing at all times in order to detect all targets entering the sensing region whereas non-borders sensing channel goes into hibernation. Main components of the algorithm: 1. Target Descriptor Formulation Algorithm 2. Sensor Selection Algorithm 3. Failure Recovery

Target Descriptor Formulation Algorithm: In order to identify the target and provide the target’s location information, cluster heads use a Target Descriptor (TD). The following items are incorporated in the TD: 1. Target identity 2. Target’s present location 3. Target’s next predicted location 4. Time stamp

Sensor Selection Algorithm After cluster head CH i predicts the location of the target, the downstream cluster head CH i+1 towards which the target is headed receives a message from CH i indicating this predicted location. The search algorithm running at CH i+1 is able to locally decide the sensor-triplet to sense the target. There are 3 modes of sensor selection: 1. Search for sensor triplet with normal beam 2. Search for sensor triplet with high beam 3. Coordination between multicluster

Search for Sensor Triplet Using Normal Beam

Search for sensor triplet with high beam

Co-ordination between multi-cluster

Failure Recovery Possible failure scenarios: 1. If the upstream cluster head does not get any confirmation from the downstream cluster head after a given period of time, then it assumes that the downstream cluster head is no longer available and the target has been lost. 2. The target changes it direction or speed so abruptly that it moves significantly away from the predicted location and falls out of the detectable region of the sensor-triplet selected for the sensing task. The Recovery process is broken into 3 steps:

First level of recovery: Let the currently selected sensor triplet switch to high beam if they were using the normal beam previously. If this succeeds, then follow the normal “sense-predict-communicate- sense” cycle. Second level of recovery: If the first level of recovery fails, a group of sensors which are around r meters away from it are activated. These sensors will be able to monitor a circular area of radius 2r. Nth level of recovery: If the second level of recovery does not succeed, then another group of sensors that are (2N - 3)r meters away from it are activated to locate the target.

Simulation results

Tracking Resolution is the time length between two consecutive sensing points with the intuition that as the resolution becomes finer, the miss probabilities will decrease.

Other tracking algorithms: 1. Dynamic Clustering Algorithm for Acoustic Target Tracking: [4] It consists of (a) Static backbone of sparsely placed high-capability sensors which assume the role of a cluster Head (CH). (b) Densely populated low-end sensors who provide sensor information to Cluster Heads upon requests. A Cluster Head (CH) becomes active when the acoustic signal strength detected by the CH exceeds a certain pre- determined threshold. The active CH then broadcasts a packet in the vicinity to join the cluster and provide their sensing information.

2. UW – CSP Algorithm [1] Assume that nodes in a cell detect the target. These are termed active nodes and the cell is termed active cell. Active nodes report their energy outputs to manager nodes at N successive time instants. At each time instant, the manager nodes determine the location of target from energy detector outputs of the active nodes. The manger node uses locations of target at N successive time instants to predict the location of the target at M(<N) future instants. The predicted positions are used to create new cells that the target is likely to enter. Once the target is detected in the new cell, it is designated as the active cell.

Conclusion and Future Research Thus we have covered algorithms which deal with sensor placement for effective tracking, detection and tracking of objects and line shadows. This is a very active area of research. Many algorithms have been developed, but most of them are based on assumptions, which make them usable only in certain scenarios. Some of the research areas are: 1. Tracking multiple closely spaced targets effectively. 2. Intra sensor Collaboration (Modal fusion) 3. Inter sensor Collaboration (Centralized processing)

References: 1. Dan Li; Wong, K.D.; Yu Hen Hu; Sayeed, A.M.;- Detection, classification and tracking of targets - Signal Processing Magazine, IEEE Volume 19, Issue 2, March 2002 Page(s): Brooks, R.R.; Ramanathan, P.; Sayeed, A.M.;- Distributed target classification and tracking in sensor networks - Volume 91, Issue 8, Aug Page(s):1163 – Jie Liu; Patrick Cheung; Feng Zhao; Leonidas Guibas; - A dual-space approach to tracking and sensor management in wireless sensor networks - Proceedings of the 1st ACM international workshop on Wireless sensor networks and applications – Pages Wei-Peng Chen; Hou, J.C.; Lui Sha; - Dynamic clustering for acoustic target tracking in wireless sensor networks - Mobile Computing, IEEE Transactions on - Volume 3, Issue 3, July-Aug Page(s):258 – Chakrabarty, K.; Iyengar, S.S.; Hairong Qi; Eungchun Cho; - Grid coverage for surveillance and target location in distributed sensor networks - Computers, IEEE Transactions on - Volume 51, Issue 12, Dec Page(s): Yang, H.; Sikdar, B.; - A protocol for tracking mobile targets using sensor networks - Sensor Network Protocols and Applications, Proceedings of the First IEEE IEEE International Workshop on - 11 May 2003 Page(s):71 – 81