Single Point Turning of Materials Using FEM Simulations Presented by: Chris Wells Brant Liou.

Slides:



Advertisements
Similar presentations
Stuart McAllister October 10, 2007
Advertisements


IE 337: Materials & Manufacturing Processes
Chapter 21 THEORY OF METAL MACHINING
Manufacturing Processes lab I Cutting tools
Stainless steel 316 CNMG MMC 2025 C5-PCLNL HP 3,0 1,5 1,0 0,5 0,25 0,10,15 0,20,25 0,30,350,40,5 1 v c 180 m/min Coolant pressure 7 bar Feed.
C5-PCLNL HP 3,0 1,5 1,0 0,5 0,25 0,10,15 0,20,25 0,30,350,40,5 1 Stainless steel 316 CNMG MM 2025 v c 180 m/min Coolant pressure 7 bar Feed.
AUTHORS: HACI SAGLAM FARUK UNSACAR SULEYMAN YALDIZ International Journal of Machine Tools & Manufacture Investigation of the effect of rake angle and approaching.
FEA Model of Orthogonal Turning of Titanium December 15, 2005 Mark Ronski.
Prediction of tool life for restricted contact and grooved tools based on equivalent feed J.A. Arsecularatne 24 March 2004 International Journal of Machine.
Modeling the Sliding of a Hard Wedge on a Metal Substrate Ernesto Gutierrez-Miravete Rensselaer at Hartford CCAT- Summer 2010.
Wire and rod drawing.
1 Comparison between Experimental & Numerical Results for Single Point Diamond Turning (SPDT) of silicon carbide (SiC) John Patten, Director Manufacturing.
Cutting speeds.
MODELLING THERMAL EFFECTS IN MACHINING BY FINITE ELEMENT METHODS Authors Andrea Bareggi (presenter) Andrew Torrance Garret O’Donnell IMC 2007 Department.
Green Cutting using Supersonic Air Jets as Coolant and Lubricant during Turning Authors Andrea Bareggi (presenter) Andrew Torrance Garret O’Donnell ICMR.
ME Manufacturing Systems Metal Machining Metal Machining.
THEORY OF METAL MACHINING
Chip-Type Machining Processes
Machining Manufacturing Processes © 2012 Su-Jin Kim GNU Cutting Tool Materials ( 공구 재질 ) HSS ( 하이스 ) Carbide ( 초경 ) Cermet CBN Diamond.
THEORY OF METAL MACHINING
Possibilities Of Aluminium Extrusion By The ECAP Method Miroslav Greger - VŠB – Technical University of Ostrava Stanislav Rusz - VŠB – Technical University.
Final Exam Review.
Manufacturing Engineering Technology in SI Units, 6 th Edition PART IV: Machining Processes and Machine Tools Copyright © 2010 Pearson Education South.
Lecture 12 Different types of extrusion and their characteristics
Thermodynamic Work consumed during Manufacturing Processes P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Estimation of manufacturing.
Instructor: Shantanu Bhattacharya
IE 243 MANUFACTURING PROCESSES
Similarity Numbers in Metal Cutting Testing and Modeling Viktor P. Astakhov CIRP 12.
Investigation of machining parameter for face milling operations on various materials Members:- P.Abupakkar sidhic, ( ) J.Kavirajan, ( )
First Year, Mechanical Engineering Dept., Faculty of Engineering, Fayoum University Dr. Ahmed Salah Abou Taleb 1 Manufacturing Processes 1 (MDP 114)
THEORY OF METAL CUTTING THEORY OF METAL MACHINING 1.Overview of Machining Technology 2.Theory of Chip Formation in Metal Machining 3.Force Relationships.
Machining Manufacturing Processes © 2012 Su-Jin Kim GNU Manufacturing Processes Cutting (Machining) 절삭가공 Su-Jin Kim School of Mechanical Engineering Gyeongsang.
Christopher A. Brown Mechanical Engineering Department
TEMPERATURES IN METAL CUTTING
MFGE 307 THEORY OF MANUFACTURING TECHNOLOGY II 1 Chapter 2 MECHANICS OF METAL CUTTING MECHANICS OF METAL CUTTING Prof. Dr. S. Engin KILIÇ.
MECH152-L23-1 (1.0) - 1 Metal Cutting. MECH152-L23-1 (1.0) - 2 Metal Cutting Operations Turning Drilling Horizontal Milling Vertical Milling.
Modeling Edging Forces in Skiing using Merchant's Theory for Metal Cutting Christopher A. Brown Mechanical Engineering Department Worcester Polytechnic.
Metalworking Basics. © 2011 Kennametal Inc. l All rights reserved. l Proprietary and Confidential l 1 of 16 Metalworking 101 In a metal cutting operation.
THEORY OF METAL MACHINING
Abhishek yadav.
Revised Presentation Vlab on Manufacturing. Manufacturing Processes: Objective The intent of manufacturing processes is to produce acceptable parts and.
Stainless steel 316 CNMG MF 2025 C5-PCLNL HP 3,0 1,5 1,0 0,5 0,25 0,10,15 0,20,25 0,30,350,40,5 1 v c 180 m/min Coolant pressure 7 bar Feed.
CHAPTER 8 Material-Removal Processes: Cutting
1 Machinability of Metals Unit Machinability Ease or difficulty with which metal can be machined Measured by length of cutting-tool life in minutes.
Fundamentals of Metal cutting and Machining Processes THEORY OF METAL MACHINING Akhtar Husain Ref: Kalpakjian & Groover.
A NEW S LIP L INE T HEORY F OR O RTHOGONAL C UTTING.
UNIT-I THEORY OF METAL CUTTING
Machining Recommendations for C69300 & C87850
SS1672 (through hard) 45 HRC VBGW S01020F 7025 vc 155 m/min
UNIT-I THEORY OF METAL CUTTING
Date of download: 10/5/2017 Copyright © ASME. All rights reserved.
Machining Turning Definition: A machining operation in which a single point cutting tool removes material from a rotating workpiece to form a cylindrical.
Question 1 A plat that is 250 mm wide and 25 mm thick is to be reduced in a single pass in a two‑high rolling mill to a thickness of 20 mm. The roll has.
FORCES IN MACHINING PREPARED BY SOUNDHAR.A.
Tool Wear, Tool life & Machinability
Metal Machining.
From: Modeling and Analysis of Forces in Laser Assisted Micro Milling
Machinability & Physics of Metal Cutting
Basic principles of broaching
THEORY OF METAL MACHINING
Research Overview Yang Guo.
Physics of Metal Cutting & Machinability of Metals
Machining Processes.
Chip Formation.
Stuart McAllister October 10, 2007
Metal cutting. Introduction Metal cutting or “Machining” is a process which removing unwanted materials from the work piece by the form of chips. The.
THEORY OF METAL MACHINING
Machining Recommendations for C69300 & C87850
 Overview of Machining Technology  Theory of Chip Formation in Metal Machining  Force Relationships and the Merchant Equation  Power and Energy Relationships.
Presentation transcript:

Single Point Turning of Materials Using FEM Simulations Presented by: Chris Wells Brant Liou

Single Point Turning of Materials Using FEM Simulations Background Information on Single-Point Turning Background Information on Single-Point Turning Elements of Single Point Turning Elements of Single Point Turning Material Cases: Material Cases:  Grade 410 Stainless Steel (Annealed)  Brass Material (As-Sintered)  Aluminum Alloy Al2024-T3511 (Cold-Drawn)  Inconel 718 FEM Model setup FEM Model setup Depth of Cut Depth of Cut Feed Feed Speed Speed Rake Angle Rake Angle Tool Material Tool Material FEM Results FEM Results Theories & Calculations Theories & Calculations Conclusion Conclusion

Elements of Single Point Turning (Orthogonal) Machining angles: Machining angles:  Rake angle, α  Friction Angle, λ  Shear Plane Angle, φ

Material Cases AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Hardness = 375 Bhn Hardness = 375 Bhn Yield Strength = 883 MPa Yield Strength = 883 MPa

Material Cases Type C37700 Brass Material Type C37700 Brass Material Hardness = 81 Bhn Hardness = 81 Bhn Yield Strength = 138 MPa Yield Strength = 138 MPa

Material Cases Al 2024-T3511 Hardness = 38 to 50 Bhn Hardness = 38 to 50 Bhn Yield Strength = 170MPa Yield Strength = 170MPa

Material Cases Iconel 718 Hardness = 454 Bhn Hardness = 454 Bhn Yield Strength = 1103MPa Yield Strength = 1103MPa

FEM Results AISI Grade 4130 Alloy (Medium Carbon) Input Parameters: Depth of Cut = 4 mm Feed = 0.4 mm/rev Speed = 100 m/min Rake Angle = 0 ° Cutting Radius = 0.02 mm Relief Angle = 10 ° Cutting Tool – HSS-General Click on the image to animate the results

FEM Results AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 0 0 Max Shear Stress MPa AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 45 0 Max Shear Stress MPa

FEM Results AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 0 0 Cutting & Thrust Forces AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 45 0 Cutting & Thrust Forces

FEM Results AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 0 0 Max Von Mises Stress MPa AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 45 0 Max Von Mises Stress MPa

FEM Results AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 0 0 Max Temperature AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 45 0 Max Temperature

FEM Results AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Rake Angle 0 0 Max Pressure AISI Grade 4130 Alloy (Medium Carbon) AISI Grade 4130 Alloy (Medium Carbon) Brass Rake Angle 45 0 Max Pressure

FEM Results Type C37700 Brass Input Parameters: Depth of Cut = 4 mm Feed = 0.4 mm/rev Speed = 100 m/min Rake Angle = 0 ° Cutting Radius = 0.02 mm Relief Angle = 10 ° Cutting Tool – HSS- General Click on the image to animate the results

FEM Results Type C37700 Brass Rake Angle 0 0 Max Shear Stress MPa Type C37700 Brass Rake Angle 45 0 Max Shear Stress

FEM Results Type C37700 Brass Rake Angle 0 0 Cutting & Thrust Forces Type C37700 Brass Rake Angle 45 0 Cutting & Thrust Forces

FEM Results Type C37700 Brass Rake Angle 0 0 Max Von Mises Stress MPa Type C37700 Brass Rake Angle 45 0 Max Von Mises Stress

FEM Results Type C37700 Brass Rake Angle 0 0 Max Temperature Type C37700 Brass Rake Angle 45 0 Max Temperature

FEM Results Type C37700 Brass Rake Angle 0 0 Plastic Strain Type C37700 Brass Rake Angle 45 0 Plastic Strain

FEM Results Type C37700 Brass Rake Angle 0 0 Max Pressure Type C37700 Brass Rake Angle 45 0 Max Pressure

FEM Results Al 2024-T3511 (Cold Drawn) Al 2024-T3511 (Cold Drawn) Input Parameters: Input Parameters: Depth of Cut = 4 mm Depth of Cut = 4 mm Feed = 0.4 mm/rev Feed = 0.4 mm/rev Speed = 275 m/min Speed = 275 m/min Rake Angle = 0 ° Rake Angle = 0 ° Cutting Radius = 0.02 mm Cutting Radius = 0.02 mm Relief Angle = 10 ° Relief Angle = 10 ° Cutting Tool – HSS-General Cutting Tool – HSS-General Click on the image to animate the results

FEM Results Al 2024-T3511 Rake Angle 15 0 Max Temp 334 Deg C Al 2024-T3511 Rake Angle Max Temp 350 Deg C

FEM Results Al 2024-T3511 Rake Angle 15 0 Plastic Strain Al 2024-T3511 Rake Angle Plastic Strain

FEM Results Al 2024-T3511 Rake Angle 15 0 Cutting & Thrust Force Al 2024-T3511 Rake Angle Cutting & Thrust Force

FEM Results Al 2024-T3511 Rake Angle 15 0 Max Von Mises Stress 3573 MPa Al 2024-T3511 Rake Angle Max Von Mises Stress 2950 MPa

FEM Results Al 2024-T3511 Rake Angle 15 0 Max Shear Stress 1887 MPa Al 2024-T3511 Rake Angle Max Shear Stress 1589 MPa

FEM Results Al 2024-T3511 Rake Angle 15 0 Max Pressure 3120 MPa Al 2024-T3511 Rake Angle Max Pressure 2261 MPa

FEM Results Inconel 718 Inconel 718 Input Parameters: Input Parameters: Depth of Cut = 4 mm Depth of Cut = 4 mm Feed = 0.25 mm/rev Feed = 0.25 mm/rev Speed = 23 m/min Speed = 23 m/min Rake Angle = 0 ° Rake Angle = 0 ° Cutting Radius = 0.02 mm Cutting Radius = 0.02 mm Relief Angle = 10 ° Relief Angle = 10 ° Cutting Tool – HSS-General Cutting Tool – HSS-General Click on the image to animate the results

FEM Results Inconel 718 Rake Angle 15 0 Max Temp 820 Deg C Inconel 718 Rake Angle Max Temp 814 Deg C

FEM Results Inconel 718 Rake Angle 15 0 Plastic Strain Inconel 718 Rake Angle Plastic Strain

FEM Results Inconel 718 Rake Angle 15 0 Cutting & Thrust Force Inconel 718 Rake Angle Cutting & Thrust Force

FEM Results Inconel 718 Rake Angle 15 0 Max Von Mises Stress MPa Inconel 718 Rake Angle Max Von Mises Stress 6852 MPa

FEM Results Inconel 718 Rake Angle 15 0 Max Shear Stress 7305 MPa Inconel 718 Rake Angle Max Shear Stress 2845 MPa

FEM Results Inconel 718 Rake Angle 15 0 Max Pressure MPa Inconel Rake Angle Max Pressure MPa

FEM Results Inconel 718 Inconel 718 Input Parameters: Input Parameters: Depth of Cut = 4 mm Depth of Cut = 4 mm Feed = 0.25 mm/rev Feed = 0.25 mm/rev Speed = 23 m/min Speed = 23 m/min Rake Angle = 0 ° Rake Angle = 0 ° Cutting Radius = 0.02 mm Cutting Radius = 0.02 mm Relief Angle = 10 ° Relief Angle = 10 ° Cutting Tool – HSS-General Cutting Tool – HSS-General Cutting Tool – Carbide General Cutting Tool – Carbide General HSS Carbide

Theories & Calculations  Friction Angle Calculation: Al 2024-T3511 Rake Angle 0 0 tan -1 (0.25)=14 λ = 14 0 λ = 14 0

Theories & Calculations

Theories & Calculations (Cont.)

Conclusion

References Metal Machining - Theory and Applications By: Childs, T.H.C.; Maekawa, K.; Obikawa, T.; Yamane, Y. © 2000 Elsevier Metal Machining - Theory and Applications By: Childs, T.H.C.; Maekawa, K.; Obikawa, T.; Yamane, Y. © 2000 Elsevier M.C. Shaw, Metal Cutting Principles, 2nd ed., Oxford U.P., New York, 2005 M.C. Shaw, Metal Cutting Principles, 2nd ed., Oxford U.P., New York, 2005 Third Wave AdvantEdge User Manual Third Wave AdvantEdge User Manual