Chapter 15 Fluids. Pressure The same force applied over a smaller area results in greater pressure – think of poking a balloon with your finger and.

Slides:



Advertisements
Similar presentations
Fluid Mechanics Liquids and gases have the ability to flow
Advertisements

Lecture Outline Chapter 15 Physics, 4th Edition James S. Walker
Buoyancy and Archimedes Principle Lecturer: Professor Stephen T
The pressure is on Which is the best design for a dam? Explain your answer. Which dam is more likely to break? Explain your answer.
Forces in Fluids Ch. 11.
Liquids and Gasses Matter that “Flows”
Chapter 8 Forces in Fluids
Chapter 15 Fluids Dr. Haykel Abdelhamid Elabidi 1 st /2 nd week of December 2013/Saf 1435.
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Fluids - Statics Level 1 Physics. Essential Questions and Objectives Essential Questions What are the physical properties of fluid states of matter? What.
Chapter 15 Fluids Dr. Haykel Abdelhamid Elabidi 1 st /2 nd week of December 2013/Saf 1435.
Fluid Mechanics Chapter 9.
Chapter 13 Forces in Fluids.
Physics 102 Part II Thermal Physics Moza M. Al-Rabban Professor of Physics Fluids (2)
Chapter 15 Fluids.
Physics 11 Scale Up Fall 2014 Chapter 13.
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu To View the presentation as a slideshow with effects select “View”
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Unit 3 - FLUID MECHANICS.
Fluid Mechanics Chapter 10.
Lecture 21 Sound →Fluids. Standing Waves I A string is clamped at both ends and plucked so it vibrates in a standing mode between two extreme positions.
Fluids Fluids flow – conform to shape of container –liquids OR gas.
Warm-up Pick up the free response at the door and begin working on it.
Fluid Mechanics Chapter 8.
Fluids AP Physics Chapter 10.
1) 1/4 2) 1/3 3) 4/3 4) 3/4 5) 2/1 An object floats in water with 3/4 of its volume submerged. What is the ratio of the density of the object to that of.
Liquids Liquids Pressure = Force/Area Pressure = Force/Area Pressure Liquid = Weight Density x Depth Pressure Liquid = Weight Density x Depth 1 Liter.
Chapter 3 Notecards. What is the formula for pressure? Force/Area.
L 13 Fluids [2]: Statics  fluids at rest  More on fluids at rest  How is atmospheric pressure measured?  Buoyancy: How can a steel boat float?
Solids & Fluids Relating Pressure to Solid & Fluid systems 01/30.
Waves – Chapter 14. Superposition and Interference Waves of small amplitude traveling through the same medium combine, or superpose, by simple addition.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Wednesday, Nov. 24, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Quiz Workout 2.Buoyant Force and Archimedes’ Principle 3.Flow Rate and Continuity Equation.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Unit 6 : Part 1 Fluids.
Monday, Apr. 19, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #21 Monday, Apr. 19, 2004 Dr. Jaehoon Yu Buoyant Force.
Fluids. Pressure in Liquids A liquid exerts a pressure against the bottom of its container P = Force Area But it also exerts a force against the container’s.
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Subdivisions of matter solidsliquidsgases rigidwill flowwill flow dense dense low density and incompressible and incompressible compressible fluids condensed.
Liquids -They always take the shape of their container -They flow or you can pour them.
Properties of Fluids Mr Carter Science. How do ships float? The answer is buoyancy.
Chapter 10.4 Learning Goals
Chapter 4: Forces and Fluids
Forces in Fluids Chapter 11 State Standard: Unbalanced forces cause changes in velocity. All objects experience a buoyant force when immersed in a fluid.
Chapter 8 Table of Contents Section 1 Fluids and Buoyant Force
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 15 Physics, 4 th Edition James S. Walker.
Forces in Fluids Chapter 13. Fluid Pressure  Section 13-1.
CONCEPTUAL PHYSICS Liquids.
Forces in Fluids Section 6-1 Pressure. Forces in Fluids What is pressure?  A force pushing on a surface How do force and pressure differ?  Your downward.
Chapter 7 Forces in Fluids.
Fluids A fluid is anything that flows (liquid or a gas)
Chapter 7 - Holt Forces in Fluids. Section 1 pages A fluid is any material that can flows and that takes the shape of its container. Fluids include.
Fluid Mechanics Chapter 8. Fluids Ability to flow Ability to change shape Both liquids and gases Only liquids have definite volume.
Fluid Mechanics Chapter 9 Review. Agenda:  9.1: Fluids and Buoyant Force  9.2: Fluid Pressure and Temperature  9.3: Fluids in Motion  9.4: Properties.
Today (Chapter 10, Fluids)  Review for Exam 2 Tomorrow (Chapters 6-10)  Review Concepts from Tuesday  Continuity Equation  Bernoulli’s Equation  Applications/Examples.
Chapter 11 – Forces in Fluids. Pressure The amount of pressure you exert depends on the area over which you exert force. Pressure is equal to the force.
Hello! I’m Chris Blake, your lecturer for the rest of semester
Chapter 12: Forces and Fluids
Fluid Mechanics Presentation on FLUID STATICS BY Group:
Chapter 12 Section 2.
Physics 21.
Fluids Liquids and Gases Chapter 11.
3.2 Pressure and the Buoyant Force
Properties of Fluids.
Physical Science Forces in Fluids.
Lecture Outline Chapter 15 Physics, 4th Edition James S. Walker
Chapter 12 Section 2.
Chapter 15 Fluids.
13.1 Fluid Pressure Pressure- force distributed over an area; Pressure= F/area Pressure in Fluids Water pressure increases as depth increases The pressure.
Properties of Fluids.
Presentation transcript:

Chapter 15 Fluids

Pressure The same force applied over a smaller area results in greater pressure – think of poking a balloon with your finger and then with a needle. Pressure is not the same as force! Pressure is force per unit area Pressure is a useful concept for discussing fluids, because fluids distribute their force over an area

Pressure and Depth Pressure increases with depth in a fluid due to the increasing mass of the fluid above it.

Pressure and depth Pressure in a fluid includes pressure on the fluid surface (usually atmospheric pressure)

Pressure depends only on depth and external pressure (and not on shape of fluid column)

Equilibrium only when pressure is the same Unequal pressure will cause liquid flow: must have same pressure at A and B Oil is less dense, so a taller column of oil is needed to counter a shorter column of water

Pascal’s principle An external pressure applied to an enclosed fluid is transmitted to every point within the fluid. Hydraulic lift Assume fluid is “incompressible” F 1 / A 1 = P = F 2 / A 2

Pascal’s principle Hydraulic lift F 1 / A 1 = P = F 2 / A 2 Are we getting “something for nothing”? Assume fluid is “incompressible” so Work in = Work out!

Buoyancy A fluid exerts a net upward force on any object it surrounds, called the buoyant force. This force is due to the increased pressure at the bottom of the object compared to the top. Consider a cube with sides = L

Buoyant Force When a Volume V is Submerged in a Fluid of Density ρ fluid F b = ρ fluid gV Archimedes’ Principle Archimedes’ Principle: An object completely immersed in a fluid experiences an upward buoyant force equal in magnitude to the weight of fluid displaced by the object. Q: Does buoyant force depend on depth? a) yes b) no

Measuring the Density Get the volume from ( T 1 - T 2 ) = V( ρ water g) Get the mass from W = T 1 = mg The King must know: is his crown true gold?

The crown-maker makes a crown for the king. Archimedes weighs the crown and determines that its weight in air is 5.54 N and that its weight in water is 5.05 N. Should the crown-maker maker be paid or ???

Off with his head!!

Applications of Archimedes’ Principle An object floats when it displaces an amount of fluid equal to its weight. equivalent mass of water wood block equivalent mass of water brass block

Can Brass Float? An object made of material that is denser than water can float only if it has indentations or pockets of air that make its average density less than that of water. An object floats when it displaces an amount of fluid equal to its weight. equivalent mass of water brass block

Applications of Archimedes’ Principle The fraction of an object that is submerged when it is floating depends on the densities of the object and of the fluid.

Cartesian Diver Think of a weighted balloon submerged in water How will the balloon change when pressure goes up? Did its weight change when pressure went up? So when pressure goes up: - will it float higher? - or will it sink?

Wood in Water Two beakers are filled to the brim with water. A wooden block is placed in the beaker 2 so it floats. (Some of the water will overflow the beaker and run off). Both beakers are then weighed. Which scale reads a larger weight? a b c same for both

displaces an amount of water equal to its weight weight of the overflowed water is equal to the weight of the blockbeaker in 2 has the same weight as that in 1 The block in 2 displaces an amount of water equal to its weight, because it is floating. That means that the weight of the overflowed water is equal to the weight of the block, and so the beaker in 2 has the same weight as that in 1. Wood in Water a b c same for both Two beakers are filled to the brim with water. A wooden block is placed in the beaker 2 so it floats. (Some of the water will overflow the beaker and run off). Both beakers are then weighed. Which scale reads a larger weight?

Wood in Water II A block of wood floats in a container of water as shown on the right. On the Moon, how would the same block of wood float in the container of water? Earth Moon abc

weight of water equal to the object’s weight less weightalso has less weight A floating object displaces a weight of water equal to the object’s weight. On the Moon, the wooden block has less weight, but the water itself also has less weight. Wood in Water II A block of wood floats in a container of water as shown on the right. On the Moon, how would the same block of wood float in the container of water? Moon abc Earth

A wooden block is held at the bottom of a bucket filled with water. The system is then dropped into free fall, at the same time the force pushing the block down is also removed. What will happen to the block? a) the block will float to the surface. b) the block will stay where it is. c) the block will oscillate between the surface and the bottom of the bucket

A wooden block is held at the bottom of a bucket filled with water. The system is then dropped into free fall, at the same time the force pushing the block down is also removed. What will happen to the block? a) the block will float to the surface. b) the block will stay where it is. c) the block will oscillate between the surface and the bottom of the bucket Bouyant force is created by a change of pressure with depth. Pressure is created by the weight of water being held up. In free-fall, nothing is being held up! No apparent weight!

A wooden block of cross-sectional area A, height H, and density ρ 1 floats in a fluid of density ρ f. If the block is displaced downward and then released, it will oscillate with simple harmonic motion. Find the period of its motion. h

A wooden block of cross-sectional area A, height H, and density ρ 1 floats in a fluid of density ρ f. If the block is displaced downward and then released, it will oscillate with simple harmonic motion. Find the period of its motion. Vertical force: F y = (hA)g ρ f - (HA)g ρ 1 h at equilibrium: h 0 = H ρ 1 / ρ f Total restoring force: F y = -(Ag ρ f )y h = h 0 - y Analogous to mass on a spring, with κ = Agρ f

Fluid Flow and Continuity Continuity tells us that whatever the mass of fluid in a pipe passing a particular point per second, the same mass must pass every other point in a second. The fluid is not accumulating or vanishing along the way. This means that where the pipe is narrower, the fluid is flowing faster Volume per unit time

Continuity and Compressibility Most gases are easily compressible; most liquids are not. Therefore, the density of a liquid may be treated as constant (not true for a gas). mass flow is conserved volume flow is conserved

Bernoulli’s Equation When a fluid moves from a wider area of a pipe to a narrower one, its speed increases; therefore, work has been done on it. The kinetic energy of a fluid element is: Equating the work done to the increase in kinetic energy gives:

Bernoulli’s Equation Where fluid moves faster, pressure is lower

Bernoulli’s Equation If a fluid flows in a pipe of constant diameter, but changes its height, there is also work done on it against the force of gravity. Equating the work done with the change in potential energy gives:

Bernoulli’s Equation The general case, where both height and speed may change, is described by Bernoulli’s equation: This equation is essentially a statement of conservation of energy in a fluid.

Dynamic lift v low P high v high P low Aircraft wing

Applications of Bernoulli’s Equation If a hole is punched in the side of an open container, the outside of the hole and the top of the fluid are both at atmospheric pressure. Since the fluid inside the container at the level of the hole is at higher pressure, the fluid has a horizontal velocity as it exits.