HOT JOINING OF METALS SOFT SOLDERING HARD SOLDERING BRAZING

Slides:



Advertisements
Similar presentations
Group D: Tarang Valecha Dhananjay R. Apurva Mali Prateek Singh
Advertisements

HVAC523 Soldering.
WELDING Welding is a materials joining process which produces coalescence of materials by heating them to suitable temperatures with or without the application.
UNIT: Oxy-Acetylene; Welding, Brazing, Cutting and Heating
Oxyacetylene Process.
ASHOKA INSTITUTE OF TECHNOLOGY & MANAGEMENT AKTHA, SARNATH VARANASI
Electric Arc Welding Electricity is passed through an electrode which jumps between the electrode and the work piece. This causes an arc which produces.
ME 330 Manufacturing Processes WELDING PROCESSES
Arc Welding Equipment
SMAW (Stick Welding) SECTION OVERVIEW:
Flexible Manufacturing
UNIT: Oxy-Acetylene; Welding, Brazing, Cutting and Heating LESSON: Oxy-Acetylene Welding (OAW) RUNNING A BEAD WITH AND WITHOUT FILLER ROD Standard B7.4.
Brazing & Braze Welding With Oxyacetylene
Gas Welding (Oxy-acetylene)
Question 1. State two precautions associted with oxyacetylene welding.
Welding Basics Manufacturing Technology HPEDSB.
Gas Heating, Cutting, Brazing, and Welding
CHAPTER THREE JOINING OF MATERIALS
Welding Workshop Technology
© Learning and Teaching Scotland 2006 Soldering Soldering makes a permanent joint between two pieces of metal. It can be used on most metals but not aluminium.
Joining Metals Learning Intention: understand the processes of soldering, brazing, welding, riveting/pop riveting.
Intro to SMAW Welding Intro to Agriculture.
WELDING EQUIPMENT WELDING EQUIPMENT BRAZING GAS FUSION WELDING GAS FUSION WELDING ELECTRIC ARC WELDING ELECTRIC ARC WELDING INDUSTRIAL TECHNOLOGY- METAL.
UNIT—II JOINING PROCESS
Oxyfuel Cutting And Welding. Introduction  Oxyfuel: the process of combining pure oxygen with a combustible fuel gas to produce a flame  Can be used.
Welcome To WELDING PROCESSES. A Presentation by: John Clulow. SAPIS / APIU.
Welding Transportation Mr. O’Rourke. What is Welding? A fabrication process that joins metal. This is done by melting the work pieces and adding a filler.
Welding Processes.  The process of joining two or more pieces of like metal  Parts are heated enough to cause it to melt where they meet  When the.
Arc Welding Techniques
Cutting with Oxyfuels and Other Gases
Metal – Processing Welding.
Fabrication Welding
SMAW (Stick Welding) SECTION OVERVIEW:
TIG lesson Lesson ). ARC Welding Arc welding is a processes where metals are melted and joined together using intense heat produced by an electric arc.
Brazing Metals Quiz Steel to Steel Copper To Copper Aluminium to Aluminium Brass To Brass 1.Brazing is used to join which two metals?
1 HVACR316 - Piping Torches, Tips, Tanks Torches, Tips, Tanks.
New Mexico FFA Agricultural Mechanics Career Development Event
FRICTION WELDING. Friction Welding Friction Welding is a Solid State Welding process, in which two cylindrical parts are brought in contact by a friction.
Projection welding.
Welding/Metal Working Tool Id
Flux Cored Arc Welding (FCAW)
AG Mechanics Fall Semester Review. 1.1 Define terminology 1. Agricultural mechanics – a broad area of knowledge and skills related to performing construction,
IT 208Chapter 141 ELECTRICAL WELDING Resistance Welding – The two parts are pressed together and an alternating current (A/C) is passed through the contact.
1 Brazing and Braze Welding TSM 233 Unit 4. TSM 233 Metallurgy and Welding Processes What is brazing? Bond materials melts above 840 degrees F. As in.
 Brazing may be define as a techniques of joining two similar or dissimilar materials by additional of special filler metal.
Principles: WELDING PROCESS: Fusion welding Base metal is melted
Arc Welding Equipment Welding Machines AC – (alternating current) used for most agricultural arc welding jobs and has low purchase cost compared.
AGRICULTURAL MECHANICS I UNIT I:METAL SKILLS COMPETENCY:AM26.00 Research arc welding equipment. OBJECTIVE:AM26.01 Compare types of arc welding machines,
Joining Techniques Continued.... Fusing Fusing is the process whereby two or more materials are joined by either: 1.Heating them until they melt and run.
GAS WELDING PROCESS Prof. J L RAMDATTI Presented by:-
Fabrication Welding
Brazing.
Soldering Brazing.
GAS WELDING.
TIG welding By Mr. A Nirala Galgotias University.
Mr. Huebsch Welding.
Welding Sheet Metal Flexible Manufacturing.
Fusion welding Process
Welding Processes Gautam singh (M.E 4th yr)
Unit 28: Non-mechanical joints 1 Dr
Chapter 28: Non-mechanical joints 1
Welding Mr. Huebsch.
Subject Name: MANUFACTURING PROCESS Subject Code: 10AE35
Subject Name: MANUFACTURING PROCESS Subject Code: 10AE35
WELDING Welding is a materials joining process which produces coalescence of materials by heating them to suitable temperatures with or without the application.
Brazing Metals Quiz.
WELDING Welding is a materials joining process which produces coalescence of materials by heating them to suitable temperatures with or without the application.
Fabrication Welding
Question 1. State two precautions associted with oxyacetylene welding.
Presentation transcript:

HOT JOINING OF METALS SOFT SOLDERING HARD SOLDERING BRAZING WELDING OXY-ACETYLENE (S5HS WELDING ELECTRIC ARC (S4HS) Flux coated filler rod MIG (Metal Inert Gas) TIG (Tungsten Inert Gas) © Ideas In2 Action 2006

Soft soldering Soft soldering is a quick method of joining most metals such as copper, brass, tinplate and steel. An exception is aluminium. The process is best confined to light fabrication where joints are not subjected to heat and vibration and so do not need to be very strong. Soft solder is an alloy made from varying proportions of tin and lead with antimony. The melting point varies according to composition, ranging from 183 to 250 degrees Centigrade. The solder used for electronics contains more tin than lead, making it flow more easily at a lower temperature. The solder for tinplate or plumbing copper water pipes contains more lead than tin. It melts at a higher temperature and sets harder. © Ideas In2 Action 2006

Soft soldering fluxes Fluxes, available as liquids, powders or pastes, have been specially developed to protect the cleaned surfaces from oxidisation during heating; solders only stick to clean metal. The flux also helps the molten solder to flow freely by breaking down surface tension. Active fluxes (e.g. bakers’ flux) contain zinc chloride which chemically clean the surfaces. However, it is highly corrosive and must be washed off immediately upon completion. Passive flux are non-corrosive, but they only protect and do not actually clean. an example is the multi-core solder used in electronics, which has cores of resin flux running throughout its length. © Ideas In2 Action 2006

Joining Process A good solder joint depends on A clean surface, In preparation for soldering the joint surfaces must be clean. Use a suitable abrasive (e.g. emery cloth or steel wool) and avoid touching the area. In the joining process close-fitting joints are essential to ensure that the capillary action unites the surfaces. A good solder joint depends on A clean surface, the correct flux appropriate heat © Ideas In2 Action 2006

Joining Process There are several ways of applying the necessary heat and solder. An electric soldering iron is cleaned, while hot, using a wet sponge and then ‘tinned’ with a thin film of solder. Or the joint is sweated, by tinning both parts of the joint first. © Ideas In2 Action 2006

Hard soldering Hard soldering is much stronger than soft soldering and requires higher temperatures. Soft solders melt at around 200 degrees C, whereas the lowest melting point of hard solder is 625 degrees C. The principle of local alloying and using a flux remains the same. The extra heat requirement is supplied by using a gas/air torch. © Ideas In2 Action 2006

Silver soldering Silver soldering is so called because hard solder contains silver alloyed with copper and zinc, giving melting points ranging from 625 to 800 degrees Centigrade. It enables work to be joined in several stages, first using solder with a high melting point, working through lower melting points to finally the lowest, called ‘easy-flo’. This avoids the risk of earlier joints coming apart when applying heat for the later ones. © Ideas In2 Action 2006

Joint Preparation Proper joint preparation is important and thorough cleaning is necessary with the application of an active flux cramping the work with soft binding wire. A special easy-flo’ flux is used for the lowest melting silver solder, whilst medium and hard grade solders use a borax flux (‘Tenacity’). © Ideas In2 Action 2006

Soldering the joint Pre-heat the joint with a gentle flame, then concentrate to a small hot flame to achieve a dull red heat. Solder flows to the hottest part, following the flame along the line of the joint. © Ideas In2 Action 2006

Brazing Brazing is a technique similar to soldering, except that considerably higher temperatures are needed. Brazing spelter is an alloy of copper and zinc (brass) and melts in the range 870—880 degrees Centigrade. This results in a much stronger joint, since brass is stronger than solder. An air blown (brazing) gas torch is needed to maintain a hot flame. This does create a limiting factor, making it too hot to use with brass and copper, but it is ideal for mild steel. © Ideas In2 Action 2006

Joint Preparation Joints do benefit from interlocking, but they should all be wired or held securely to allow for expansion during heating. Use a flux with borax or a proprietary brand like ‘Sift bronze.’ © Ideas In2 Action 2006

Hints for hard soldering The joint area must be thoroughly clean and fluxed. Allow time for spelter or solder to flow, melting on the hot metal (not in the flame). Pre-heat gently, avoid too fierce a flame which might blow away flux and spelter or solder. Surround with fire-bricks to reflect all possible applied heat. Heavy sections will require the most heat, at least to dull red. Maintain the heat on the join, until the spelter or solder flows throughout the joint. © Ideas In2 Action 2006

Welding Health and safety references COSHH Regs -1.021 -1.022 -1.023 Welding offers a permanent method of fastening and fabricating products from a wide range of materials. Welding is the joining of two materials (usually metal) in their liquid form which solidifies and fuses together to form a joint that is as strong as the parent metal. Industrially there are many ways of achieving this fusion. Within school workshops two basic methods of welding metal are possible: oxy-acetylene and electric arc. Health and safety references COSHH Regs -1.021 -1.022 -1.023 -1.024 BS4163 2000 -Pages 40- 41 © Ideas In2 Action 2006

Types of welding processes Oxy-acetylene welding uses a mixture of the two gasses to produce a very hot flame (35000C) that is used to melt the metal. The molten pool is moved along the joint line and additional material is introduced to it from a filler rod of the same metal. Electric arc welding makes use of a flux coated filler rod that acts as an electrode. A low voltage, high electrical current is struck between the electrode rod and the workpiece. The heat produced by the resulting electric arc melts both the rod and the material to be joined. The rod acts as a filler for the joint and so is consumed in the welding process. Metal Inert Gas (MIG) welding is another electric arc welding process. In this instance a continuous wire electrode is fed from a coil through the welding torch. The process is shielded by an inert gas enabling it to be used for aluminium welding. MIG welding has developed into a very controllable process and is now one of the most popular applications for robots. © Ideas In2 Action 2006

Oxy-acetylene welding In oxy-acetylene welding a heat source of around 3500 degrees C is produced by burning acetylene gas in oxygen. Fine adjustment to the ratio of gases is made on the hand-held blowpipe. Excess oxygen gives the hottest flame, but a neutral flame, with equal volumes of gas, is the most widely used. Adjustments are made to suit the thickness and type of metal being welded. © Ideas In2 Action 2006

The Process During the welding process a pool of molten metal is created. A filler rod, of the same metal as that being joined, is dipped into this and melts, filling the joint. Fluxes are used with some materials, but not steels. © Ideas In2 Action 2006

Electric arc welding In electric arc welding an electric arc, of low voltage but high current of 10—120 amps, is struck between a metal electrode and the material to be joined. The electrode, as well as carrying current, is a flux-coated filler rod. Very intense heat is produced at the end of the arc, melting the electrode and the metals to be joined to form the weld bead. Protection from oxidation is given by the special flux. This generates a gaseous shield, forming a molten blanket over the weld pool. As it solidifies a brittle glassy slag is formed, which can be easily chipped away when cold. Different metal thicknesses require different diameters of electrode and different currents. This process is widely used because of its low capital and running costs. © Ideas In2 Action 2006

PREPARATION OF JOINTS To prepare the joints, paint, rust and any galvanised (zinc) coating must be removed. Thicker metal requires edge treatment such as bevelling, so that the weld achieves strength by penetration into the metal. © Ideas In2 Action 2006

The electric arc welding process SPECIAL EYE SHIELDING OR VISORS ARE COMPULSORY LEATHER APRON SHOULD BE WORN LEATHERGLOVES SHOULD BE WORN WORK SHOULD BE CARRIED OUT IN A SHIELDED BOOTH AWAY FROMANY OBSERVERS © Ideas In2 Action 2006

INDUSTRIAL APPLICATION Spot welding is used commercially to give intermittent welds and some pre-tacking may be necessary with long runs. Aluminium is an important material but is difficult to work because of its oxide film. MIG (metal inert gas) and TIG (tungsten’ inert ~gas) are processes used for welding aluminium. © Ideas In2 Action 2006