Pengujian Parameter Regresi Pertemuan 26 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.

Slides:



Advertisements
Similar presentations
Pengujian Parameter Regresi Ganda Pertemuan 22 Matakuliah: L0104/Statistika Psikologi Tahun: 2008.
Advertisements

Uji Kelinearan dan Keberartian Regresi Pertemuan 02 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
Objectives (BPS chapter 24)
Chapter 12 Simple Linear Regression
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Part I – MULTIVARIATE ANALYSIS C2 Multiple Linear Regression I
1 1 Slide 統計學 Spring 2004 授課教師:統計系余清祥 日期: 2004 年 5 月 4 日 第十二週:複迴歸.
Pengujian Parameter Koefisien Korelasi Pertemuan 04 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
1 1 Slide © 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Korelasi dalam Regresi Linear Sederhana Pertemuan 03 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 Pertemuan 13 Regresi Linear dan Korelasi Matakuliah: I0262 – Statistik Probabilitas Tahun: 2007 Versi: Revisi.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Slides by JOHN LOUCKS & Updated by SPIROS VELIANITIS.
Objectives of Multiple Regression
Chapter 13: Inference in Regression
Regression Method.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide Simple Linear Regression Part A n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n.
Econ 3790: Business and Economics Statistics
1 1 Slide © 2016 Cengage Learning. All Rights Reserved. The equation that describes how the dependent variable y is related to the independent variables.
1 1 Slide © 2005 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
1 1 Slide © 2003 Thomson/South-Western Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved OPIM 303-Lecture #9 Jose M. Cruz Assistant Professor.
1 1 Slide © 2007 Thomson South-Western. All Rights Reserved Chapter 13 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
1 1 Slide © 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 1 Slide Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide © 2004 Thomson/South-Western Slides Prepared by JOHN S. LOUCKS St. Edward’s University Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Econ 3790: Business and Economics Statistics Instructor: Yogesh Uppal
QMS 6351 Statistics and Research Methods Regression Analysis: Testing for Significance Chapter 14 ( ) Chapter 15 (15.5) Prof. Vera Adamchik.
1 1 Slide © 2008 Thomson South-Western. All Rights Reserved Chapter 15 Multiple Regression n Multiple Regression Model n Least Squares Method n Multiple.
CHAPTER 14 MULTIPLE REGRESSION
INTRODUCTORY LINEAR REGRESSION SIMPLE LINEAR REGRESSION - Curve fitting - Inferences about estimated parameter - Adequacy of the models - Linear.
1 1 Slide Simple Linear Regression Coefficient of Determination Chapter 14 BA 303 – Spring 2011.
Introduction to Linear Regression
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
1 Chapter 12 Simple Linear Regression. 2 Chapter Outline  Simple Linear Regression Model  Least Squares Method  Coefficient of Determination  Model.
Multiple Regression and Model Building Chapter 15 Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.McGraw-Hill/Irwin.
1 1 Slide © 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
14- 1 Chapter Fourteen McGraw-Hill/Irwin © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter 13 Multiple Regression
1 1 Slide Simple Linear Regression Estimation and Residuals Chapter 14 BA 303 – Spring 2011.
1 1 Slide © 2003 South-Western/Thomson Learning™ Slides Prepared by JOHN S. LOUCKS St. Edward’s University.
Multiple Regression I 1 Copyright © 2005 Brooks/Cole, a division of Thomson Learning, Inc. Chapter 4 Multiple Regression Analysis (Part 1) Terry Dielman.
1 1 Slide © 2011 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole.
Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 12 Simple Linear Regression n Simple Linear Regression Model n Least Squares Method n Coefficient of Determination n Model Assumptions n Testing.
1 1 Slide The Simple Linear Regression Model n Simple Linear Regression Model y =  0 +  1 x +  n Simple Linear Regression Equation E( y ) =  0 + 
Business Research Methods
1 1 Slide © 2011 Cengage Learning Assumptions About the Error Term  1. The error  is a random variable with mean of zero. 2. The variance of , denoted.
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Multiple Regression Chapter 14.
INTRODUCTION TO MULTIPLE REGRESSION MULTIPLE REGRESSION MODEL 11.2 MULTIPLE COEFFICIENT OF DETERMINATION 11.3 MODEL ASSUMPTIONS 11.4 TEST OF SIGNIFICANCE.
Multiple Regression.
Lecture 11: Simple Linear Regression
Chapter 20 Linear and Multiple Regression
Pengujian Parameter Regresi dan Korelasi Pertemuan 20
Essentials of Modern Business Statistics (7e)
Chapter 13 Created by Bethany Stubbe and Stephan Kogitz.
John Loucks St. Edward’s University . SLIDES . BY.
Statistics for Business and Economics (13e)
Quantitative Methods Simple Regression.
Slides by JOHN LOUCKS St. Edward’s University.
Business Statistics Multiple Regression This lecture flows well with
Multiple Regression.
Multiple Regression Chapter 14.
Chapter Fourteen McGraw-Hill/Irwin
Essentials of Statistics for Business and Economics (8e)
St. Edward’s University
Presentation transcript:

Pengujian Parameter Regresi Pertemuan 26 Matakuliah: I0174 – Analisis Regresi Tahun: Ganjil 2007/2008

Bina Nusantara Uji kesamaan konstanta regresi Interaksi antar faktor

Bina Nusantara The Multiple Regression Model y =  0 +  1 x 1 +  2 x  p x p +  The Multiple Regression Equation E(y) =  0 +  1 x 1 +  2 x  p x p The Estimated Multiple Regression Equation y = b 0 + b 1 x 1 + b 2 x b p x p ^

Bina Nusantara The Least Squares Method Least Squares Criterion Computation of Coefficients’ Values The formulas for the regression coefficients b 0, b 1, b 2,... b p involve the use of matrix algebra. We will rely on computer software packages to perform the calculations. A Note on Interpretation of Coefficients b i represents an estimate of the change in y corresponding to a one-unit change in x i when all other independent variables are held constant. ^

Bina Nusantara The Multiple Coefficient of Determination Relationship Among SST, SSR, SSE SST = SSR + SSE Multiple Coefficient of Determination R 2 = SSR/SST Adjusted Multiple Coefficient of Determination ^^

Bina Nusantara Model Assumptions Assumptions About the Error Term  – The error  is a random variable with mean of zero. – The variance of , denoted by  2, is the same for all values of the independent variables. – The values of  are independent. – The error  is a normally distributed random variable reflecting the deviation between the y value and the expected value of y given by  0 +  1 x 1 +  2 x  p x p

Bina Nusantara Testing for Significance: F Test Hypotheses H 0 :  1 =  2 =... =  p = 0 H a : One or more of the parameters is not equal to zero. Test Statistic F = MSR/MSE Rejection Rule Reject H 0 if F > F  where F  is based on an F distribution with p d.f. in the numerator and n - p - 1 d.f. in the denominator.

Bina Nusantara Testing for Significance: t Test Hypotheses H 0 :  i = 0 H a :  i = 0 Test Statistic Rejection Rule Reject H 0 if t t  where t  is based on a t distribution with n - p - 1 degrees of freedom.

Bina Nusantara Testing for Significance: Multicollinearity The term multicollinearity refers to the correlation among the independent variables. When the independent variables are highly correlated (say, |r | >.7), it is not possible to determine the separate effect of any particular independent variable on the dependent variable. If the estimated regression equation is to be used only for predictive purposes, multicollinearity is usually not a serious problem. Every attempt should be made to avoid including independent variables that are highly correlated.

Bina Nusantara Using the Estimated Regression Equation for Estimation and Prediction The procedures for estimating the mean value of y and predicting an individual value of y in multiple regression are similar to those in simple regression. We substitute the given values of x 1, x 2,..., x p into the estimated regression equation and use the corresponding value of y as the point estimate. The formulas required to develop interval estimates for the mean value of y and for an individual value of y are beyond the scope of the text. Software packages for multiple regression will often provide these interval estimates. ^

Bina Nusantara Example: Programmer Salary Survey A software firm collected data for a sample of 20 computer programmers. A suggestion was made that regression analysis could be used to determine if salary was related to the years of experience and the score on the firm’s programmer aptitude test. The years of experience, score on the aptitude test, and corresponding annual salary ($1000s) for a sample of 20 programmers is shown on the next slide.

Bina Nusantara Example: Programmer Salary Survey Exper. Score Salary Exper. Score Salary

Bina Nusantara Example: Programmer Salary Survey Multiple Regression Model Suppose we believe that salary (y) is related to the years of experience (x 1 ) and the score on the programmer aptitude test (x 2 ) by the following regression model: y =  0 +  1 x 1 +  2 x 2 +  where y = annual salary ($000) x 1 = years of experience x 2 = score on programmer aptitude test

Bina Nusantara Example: Programmer Salary Survey Multiple Regression Equation Using the assumption E (  ) = 0, we obtain E(y ) =  0 +  1 x 1 +  2 x 2 Estimated Regression Equation b 0, b 1, b 2 are the least squares estimates of  0,  1,  2 Thus y = b 0 + b 1 x 1 + b 2 x 2 ^

Bina Nusantara Example: Programmer Salary Survey Solving for the Estimates of  0,  1,  2 ComputerPackage for Solving MultipleRegressionProblemsComputerPackage MultipleRegressionProblems b 0 = b 1 = b 1 = b 2 = b 2 = R 2 = etc. b 0 = b 1 = b 1 = b 2 = b 2 = R 2 = etc. Input Data Least Squares Output x 1 x 2 y x 1 x 2 y

Bina Nusantara Example: Programmer Salary Survey Minitab Computer Output The regression is Salary = Exper Score Predictor Coef Stdev t-ratio p Constant Exper Score s = R-sq = 83.4% R-sq(adj) = 81.5%

Bina Nusantara Example: Programmer Salary Survey Minitab Computer Output (continued) Analysis of Variance SOURCE DF SS MS F P Regression Error Total

Bina Nusantara Example: Programmer Salary Survey F Test – HypothesesH 0 :  1 =  2 = 0 H a : One or both of the parameters is not equal to zero. – Rejection Rule For  =.05 and d.f. = 2, 17: F.05 = 3.59 Reject H 0 if F > – Test Statistic F = MSR/MSE = /5.85 = – Conclusion We can reject H 0.

Bina Nusantara Example: Programmer Salary Survey t Test for Significance of Individual Parameters – Hypotheses H 0 :  i = 0 H a :  i = 0 – Rejection Rule For  =.05 and d.f. = 17, t.025 = 2.11 Reject H 0 if t > 2.11 – Test Statistics – Conclusions Reject H 0 :  1 = 0 Reject H 0 :  2 = 0

Bina Nusantara Qualitative Independent Variables In many situations we must work with qualitative independent variables such as gender (male, female), method of payment (cash, check, credit card), etc. For example, x 2 might represent gender where x 2 = 0 indicates male and x 2 = 1 indicates female. In this case, x 2 is called a dummy or indicator variable. If a qualitative variable has k levels, k - 1 dummy variables are required, with each dummy variable being coded as 0 or 1. For example, a variable with levels A, B, and C would be represented by x 1 and x 2 values of (0, 0), (1, 0), and (0,1), respectively.

Bina Nusantara Example: Programmer Salary Survey (B) As an extension of the problem involving the computer programmer salary survey, suppose that management also believes that the annual salary is related to whether or not the individual has a graduate degree in computer science or information systems. The years of experience, the score on the programmer aptitude test, whether or not the individual has a relevant graduate degree, and the annual salary ($000) for each of the sampled 20 programmers are shown on the next slide.

Bina Nusantara Example: Programmer Salary Survey (B) Exp. Score Degr. Salary Exp. Score Degr. Salary 478No24988Yes Yes43273No No Yes Yes No Yes No Yes38887Yes34 075No No No Yes No30370No Yes33389No30

Bina Nusantara Example: Programmer Salary Survey (B) Multiple Regression Equation E(y ) =  0 +  1 x 1 +  2 x 2 +  3 x 3 Estimated Regression Equation y = b 0 + b 1 x 1 + b 2 x 2 + b 3 x 3 where y = annual salary ($000) x 1 = years of experience x 2 = score on programmer aptitude test x 3 = 0 if individual does not have a grad. degree 1 if individual does have a grad. degree Note: x 3 is referred to as a dummy variable. ^

Bina Nusantara Example: Programmer Salary Survey (B) Minitab Computer Output The regression is Salary = Exp Score Deg Predictor Coef Stdev t-ratio p Constant Exp Score Deg s = R-sq = 84.7% R-sq(adj) = 81.8%

Bina Nusantara Example: Programmer Salary Survey (B) Minitab Computer Output (continued) Analysis of Variance SOURCE DF SS MS F P Regression Error Total

Bina Nusantara Residual Analysis Residual for Observation i y i - y i Standardized Residual for Observation i where The standardized residual for observation i in multiple regression analysis is too complex to be done by hand. However, this is part of the output of most statistical software packages. ^ ^ ^ ^

Bina Nusantara Detecting Outliers – An outlier is an observation that is unusual in comparison with the other data. – Minitab classifies an observation as an outlier if its standardized residual value is +2. – This standardized residual rule sometimes fails to identify an unusually large observation as being an outlier. – This rule’s shortcoming can be circumvented by using studentized deleted residuals. – The |i th studentized deleted residual| will be larger than the |i th standardized residual|. Residual Analysis