Maximizing CNC Utilization Module three: Advanced implications of basic features Copyright 200031.

Slides:



Advertisements
Similar presentations
Setup Reduction For CNC Machining & Turning Centers Copyright 2001 Demo only – Most topics are not active!
Advertisements

Computer Numeric Control
Industrial Engineering Program King Saud University
Lesson Topic: Handshaking Process -narrated version-
CANNED CYCLES AND SUBROUTINES
NC and CNC machines and Control Programming
High reliable and high cost-performance CNC
Relates to machining and turning centers. Commonly taught in basic CNC courses: Techniques with sequence numbers 3N words are sequence numbers 3Not needed.
CNC Programming “Milling”
G-Code Fundamentals.
Know the Code… Students will participate in an activity that will help them understand CNC programming and how machines read programmed information.
Numerical Control Instructor: Dr Haris Aziz TA: Mian Wasif 2.
Manufacturing Automation
5300 CNC CONTROL TRAINING GUIDE. 1. Turning the Control ON After the control has been turned ON press F10 to continue. Then press ENTER to select CNC.
Industrial Engineering Department King Saud University
Advanced Tool Management Information Module Advanced Tool Management Information Module.
Computer Numerical Control CNC by Anil Gajjar. Computer Numerical Control Computer Numerical control is a method of automatically operating a manufacturing.
Advanced Manufacturing Laboratory Department of Industrial Engineering Sharif University of Technology Session # 15.
CAM Systems & CNC Machine Overview
Module 1: Introduction to CNC Turning
Lesson One: Machine Configurations Turning Center Programming And Operation Copyright 2002, CNC Concepts, Inc.
Parametric Programming For CNC Machining Centers and Turning Centers Copyright 1999 Demo Only!! * Most items restricted * Poor sound quality (minimizes.
Planning for CNC Operations. Coordination of 5 functions u 1. NC management - shop supervisor u 2. Part programming - programmer u 3. Machine operators.
H4CL-M M-codes and G-Codes
Lesson One: Machine Configurations
Introduction History, Advantages, Disadvantages, Applications, Elements of Machine Control.
1. H4C series Controller H4C-M,H4C-T. H4C Controller.
Maintenance and Support Week 15 CMIS570. User Training Need to consider the same 2 groups: End users Use the system to achieve the business purpose Creating,
Maintenance and Support Week 15 CMIS570. User Training Need to consider the same 2 groups: End users Use the system to achieve the business purpose Creating,
Alpha numerical program input
Intuitive Programming System For The Mill
G & M Codes Computer Integrated Manufacturing
Motion Manipulation Words G32 – Thread cutting G15 & G16 – Polar coordinates G50 & G51 – Scaling G50.1 & G51.1 – Mirror image G60 – Single direction positioning.
1 Relates to machining and turning centers. 2 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people.
2 Variable Techniques Understanding variables Variables in custom macro B Presentation links page for lesson two Arguments Local variables Common variables.
(0,0) The Cartesian Coordinate System I IV III II +,- -,- +,+ -,+ Y+ Y- Z+ Z- X+ X- Basis for plotting all machine table positions The left/right axis.
Milling with the Lab-Volt 5600
Delay Turning Center Programming, Setup, & Operation Copyright 2001, CNC Concepts, Inc.
Relates to machining and turning centers. Commonly taught in basic CNC courses: 3Parentheses [()] allow messages 3Control ignores anything inside 3Must.
1 Introduction General information Comparison to subprogramming … to computer programming … to canned cycles Application categories Limitations Computer.
Numerical Control Programming
Introduction To CNC-Programming
The Cartesian Coordinate System
Milling Su-Jin Kim Milling Machine 0. Old milling:
HUST H4CL-T CNC SERVO SPINDLE
Competence Center for CNCandrobotics Topics:  Basic information about CNC  Functions  How to use the machines  Health, environment and safety Resources:
CNC Letters NOTE: The following will be a listing and description of Computer Numerical Control (CNC) Codes and Letter designations. We will try to stick.
CNC Codes and Letters NOTE: The following will be a listing and description of Computer Numerical Control (CNC) Codes and Letter designations. We will.
SNS COLLEGE OF ENGINEERING
PROGRAMMABLE AUTOMATION
CNC CONTROL SYSTEM AND PART PROGRAMMING
G-Code 101 With the Mike Mattera
Special motion types Special interpolation types Helical motion
An Introduction to Process Planning and G-Code
NC, CNC, DNC.
Numerical Control Sections: Fundamentals of NC Technology
Part Programming Turning Applications.
Relates to machining and turning centers
Vertical Milling.
Computer Numerical Control
Prepared by: Dr. Mohamed Ahmed Awad
CNC Programming for Mill
NC,CNC machines and Control Programming.
CNC Programming for Mill
Machine components & motion directions (p. 15)
NC and CNC machines and Control Programming
CNC Programming for Mill
CNC Machine Language گرد آورنده: بابک دلخون
CAM Systems & CNC Machine Overview - Lecture 3
TOS Control – main idea and scheme
Presentation transcript:

Maximizing CNC Utilization Module three: Advanced implications of basic features Copyright

Module three presentation plan: 3Introduction 3Documenting techniques 3Block delete techniques 3Sequence number techniques 3G code techniques 3Axis word techniques 3Speed & feed techniques 3T word techniques 3M word techniques31

Nearly every CNC feature has multiple uses31 We’re calling anything not commonly addressed in a basic course an advanced implication of basic features You may be surprised at how many basic features have advanced implications!

31 Relates to machining and turning centers

31 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters On a 16 series Fanuc control, parameter number 103 sets the baud rate for program transfers. A value of 9 represents 2400 baud, 10 is 4800 baud, 11 is 9600 baud. Example:

31 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:

31 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:

31 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: Parameters control thousands of machine functions F Reader/puncher interface F Axis control F Coordinate system F Stroke limit F Feedrate F Acceleration/deceleration F Servo F CRT/MDI/EDIT F Program F Pitch error compensation F Spindle control F Tool offset F Canned cycle F Rigid tapping F Scaling/rotation F Uni-direction positioning F Polar coordinate interpolation F Index table indexing F Custom macro F Skip functions F Graphic display F Tool life management F Look ahead F Even more!

31 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: Many are of importance to CNC programmers! F Reader/puncher interface F Axis control F Coordinate system F Stroke limit F Feedrate F Acceleration/deceleration F Servo F CRT/MDI/EDIT F Program F Pitch error compensation F Spindle control F Tool offset F Canned cycle F Rigid tapping F Scaling/rotation F Uni-direction positioning F Polar coordinate interpolation F Index table indexing F Custom macro F Skip functions F Graphic display F Tool life management F Look ahead F Even more! All CNC people should be acquainted with parameters! Throughout this course, we’ll be introducing many important functions that are controlled by parameters

31 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:

32 Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: 8 bit parameters control up to 8 functions: : Transfer condition NCRASCSB NCR 0: The EOB code used in output is LF, CR, CR 1: LF only ASC 0: The code used for data output is ISO 1: ASCII SB2 0: The number of stop bits is one 1: two Parameter number32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: 8 bit parameters control up to 8 functions: : Transfer condition NCRASCSB NCR 0: The EOB code used in output is LF, CR, CR 1: LF only ASC 0: The code used for data output is ISO 1: ASCII SB2 0: The number of stop bits is one 1: two General name32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: 8 bit parameters control up to 8 functions: : Transfer condition NCRASCSB NCR 0: The EOB code used in output is LF, CR, CR 1: LF only ASC 0: The code used for data output is ISO 1: ASCII SB2 0: The number of stop bits is one 1: two Bit numbers (0-7)32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: 8 bit parameters control up to 8 functions: : Transfer condition NCRASCSB NCR 0: The EOB code used in output is LF, CR, CR 1: LF only ASC 0: The code used for data output is ISO 1: ASCII SB2 0: The number of stop bits is one 1: two Bit names (abbreviated) Unused in this parameter32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: 8 bit parameters control up to 8 functions: : Transfer condition NCRASCSB NCR 0: The EOB code used in output is LF, CR, CR 1: LF only ASC 0: The code used for data output is ISO 1: ASCII SB2 0: The number of stop bits is one 1: two Bit values (always 0 or 1)32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: 8 bit parameters control up to 8 functions: : Transfer condition NCRASCSB NCR 0: The EOB code used in output is LF, CR, CR 1: LF only ASC 0: The code used for data output is ISO 1: ASCII SB2 0: The number of stop bits is one 1: two Documentation for each bit 1: often means on, yes, or positive 0: often means off, no, or negative32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: Whole number parameters: Parameters often contain actual values 5140: Minimum depth of cut in G Value: (represents inch) For Fanuc 16T:32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses:32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áAxis type Not commonly taught in basic courses: Each control contains thousands of parameters! Most controls use a battery to retain parameter values You MUST make a backup copy of your parameters! (use a standard DNC device) Remember to update whenever you make parameter changes! According to Fanuc USA, the majority of downtime is spent trying to re-enter lost (unrecorded) parameter settings!32

Commonly taught in basic CNC courses: 3Parameters are seldom mentioned 3Manipulated by maintenance people 3Control many machine functions Understanding parameters áDiversity of parameters áEight bit binary type áWhole number type áImportance of backing up Not commonly taught in basic courses: What experiences do you have with parameters?32