Searching for Majorana fermions in semiconducting nano-wires Pedram Roushan Peter O’Malley John Martinis Department of Physics, UC Santa Barbara Borzoyeh.

Slides:



Advertisements
Similar presentations
Topological Insulators
Advertisements

Nanostructures on ultra-clean two-dimensional electron gases T. Ihn, C. Rössler, S. Baer, K. Ensslin C. Reichl and W. Wegscheider.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Spin-orbit coupling in graphene structures D. Kochan, M. Gmitra, J. Fabian Stará Lesná,
Pinning Mode Resonances of 2D Electron Stripe Phases in High Landau Levels Han Zhu ( 朱涵 ) Physics Department, Princeton University National High Magnetic.
FROM STRANGE INSULATOR TO SPIN-ORBIT CONDUCTOR: UNVEILING ORBITAL- SELECTIVENESS AT THE LAO-STO INTERFACE. M. Gabay Intensive course by A. Millis: OXIDE.
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Status of TI Materials. Not continuously deformable Topological Invariant Topology & Topological Invariant Number of Holes Manifold of wave functions.
Quantum anomalous Hall effect (QAHE) and the quantum spin Hall effect (QSHE) Shoucheng Zhang, Stanford University Les Houches, June 2006.
Excitonic BEC in in Quantum Hall Bilayers Ramin Abolfath NRCC Anton Burkov UCSB Jim Eisenstein Cal Tech. Steve Girvin Yale Yogesh Joglekar LANL Jairo Sinova.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Spin-orbit effects in semiconductor quantum dots Departament de Física, Universitat de les Illes Balears Institut Mediterrani d’Estudis Avançats IMEDEA.
Robustness of Majorana induced Fractional Josephson Effect
Spin transport in spin-orbit coupled bands
Univ Toronto, Nov 4, 2009 Topological Insulators J. G. Checkelsky, Y.S. Hor, D. Qu, Q. Zhang, R. J. Cava, N.P.O. Princeton University 1.Introduction 2.Angle.
Experimental observation of the Spin-Hall Effect in InGaN/GaN superlattices Student : Hsiu-Ju, Chang Advisor : Yang Fang, Chen.
Majorana Fermions and Topological Insulators
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
Robustness of Topological Superconductivity in Proximity-Coupled Topological Insulator Nanoribbons Tudor D. Stanescu West Virginia University Collaborators:
Review: S.O. Coupling in Atomic Physics
Probing and Manipulating Majorana Fermions in SO Coupled Atomic Fermi Gases Xia-Ji Liu CAOUS, Swinburne University Hawthorn, July.
Subgap States in Majorana Wires
Sergei Studenikin, Geof Aers, and Andy Sachrajda National Research Council of Canada, Ottawa, Canada Electron effective mass in an ultra-high mobility.
Optical Properties of Ga 1-x Mn x As C. C. Chang, T. S. Lee, and Y. H. Chang Department of Physics, National Taiwan University Y. T. Liu and Y. S. Huang.
Spin and Charge Pumping in an Interacting Quantum Wire R. C., N. Andrei (Rutgers University, NJ), Q. Niu (The University of Texas, Texas) Quantum Pumping.
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
National University of Singapore
Berry Phase Effects on Bloch Electrons in Electromagnetic Fields
Quantum Spin Hall Effect and Topological Insulator Weisong Tu Department of Physics and Astronomy University of Tennessee Instructor: Dr. George Siopsis.
Han Pu Rice University Collaborators: Lei Jiang (NIST/JQI) Hui Hu, Xia-Ji Liu (Swinburne) Yan Chen (Fudan U.) 2013 Hangzhou Workshop on Quantum Matter.
Spin-dependent transport in the presence of spin-orbit interaction L.Y. Wang a ( 王律堯 ), C.S. Tang b and C.S. Chu a a Department of Electrophysics, NCTU.
Transport experiments on topological insulators J. Checkelsky, Dongxia Qu, Qiucen Zhang, Y. S. Hor, R. J. Cava, NPO 1.Magneto-fingerprint in Ca-doped Bi2Se3.
@Nagoya U. Sept. 5, 2009 Naoto Nagaosa Department of Applied Physics
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
QIC 890/891: A tutorial on Nanowires in Quantum Information Processing QIC 890/891: A tutorial on Nanowires in Quantum Information Processing Daryoush.
1. A photoresistor is formed from a square 1 cm x 1 cm slab of GaAs. Light of wavelength 830 nm falls onto it at a power density of 1, generating electron-hole.
Berry Phase Effects on Electronic Properties
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
Edge magnetoplasmons in single two- dimensional electron disks at microwave frequencies : Determination of the lateral depletion length C. Dahl, S. Manus,
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Tami Pereg-Barnea McGill University CAP Congress, June 16, 2014.
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Single Electron Spin Resonance with Quantum Dots Using a Micro-magnet Induced Slanting Zeeman Field S. Tarucha Dep. of Appl. Phys. The Univ. of Tokyo ICORP.
Denis Bulaev Department of Physics University of Basel, Switzerland Spectral Properties of a 2D Spin-Orbit Hamiltonian.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Spin-orbit interaction in semiconductor quantum dots systems
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
May, 21, 2014 Long, 140 ns electron spin lifetime in chemically synthesized graphene and related nanostructures and its strong interplay between the surface.
Berry Phase and Anomalous Hall Effect Qian Niu University of Texas at Austin Supported by DOE-NSET NSF-Focused Research Group NSF-PHY Welch Foundation.
Dirac’s inspiration in the search for topological insulators
Quantum spin Hall effect Shoucheng Zhang (Stanford University) Collaborators: Andrei Bernevig, Congjun Wu (Stanford) Xiaoliang Qi (Tsinghua), Yongshi Wu.
Igor Lukyanchuk Amiens University
Electronic structure of topological insulators and superconductors
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Topological Insulators
Josephson supercurrent through a topological insulator surface state
Kai Zhu, Shunhao Xiao, Xiaofeng Jin
C. Kadow1, H.-K. Lin1, M. Dahlstrom1, M. Rodwell1,
Hole Spin Decoherence in Quantum Dots
FSU Physics Department
Fig. 3 The temperature dependence of IEE of the Rashba-split 2DEG between SrTiO3 and 6-UC LaAlO3. The temperature dependence of IEE of the Rashba-split.
Information Storage and Spintronics 18
Presentation transcript:

Searching for Majorana fermions in semiconducting nano-wires Pedram Roushan Peter O’Malley John Martinis Department of Physics, UC Santa Barbara Borzoyeh Shojaei Chris Palmstrøm Materials Department, UC Santa Barbara Roman Lutchyn Microsoft Station Q The 8th Capri Spring School on Transport in Nanostructures April 2012, Capri, Italy

Fu & Kane, PRL (2008)Sau et al., PRL (2010) And more… for a review see: Alicea, arXiv: v1 Kitaev, Phys.-Usp. (2001) Theoretical proposals on Majorana fermions

Josephson Current Flux (  ) π 4π4π Majorana fermions in Josephson junctions Lutchyn et al., PRL (2010) 2π2π3π3π Topological Trivial

Josephson Current Flux (  ) π 4π4π Frequency Resonance Amplitude Majorana fermions in Josephson junctions Lutchyn et al., PRL (2010) 2π2π3π3π Topological Trivial

2DEG Parameters Device parameterstuneable parameters α,  spin orbit coupling L, W geometry Bmagnetic field g magnetic moment Δ ind induced SC gapμchemical potential m* effective mass Ttemperature μeμe electron mobility nene carrier concentration The parameter space

2DEG Parameters Device parameterstuneable parameters α,  spin orbit coupling L, W geometry Bmagnetic field g magnetic moment Δ ind induced SC gapμchemical potential m* effective mass Ttemperature μeμe electron mobility nene carrier concentration The parameter space Non-helical E Fermi Spin-orbit splitting

2DEG Parameters Device parameterstuneable parameters α,  spin orbit coupling L, W geometry Bmagnetic field g magnetic moment Δ ind induced SC gapμchemical potential m* effective mass Ttemperature μeμe electron mobility nene carrier concentration The parameter space Spin-orbit splitting Non-helical E Fermi Non-helical E Fermi

S.I. (100) GaAs Substrate 500 nm GaAs 1000 nm GaSb 2000 nm AlSb 10 x 2.5 nm GaSb / 2.5 nm AlSb S.L. 100 nm AlSb 15 nm InAs QW 50 nm Al 0.5 Ga 0.5 Sb 5 nm GaSb Cap S.I. (100) GaAs Substrate 100 nm GaAs 10 x 2.5 nm GaSb / 2.5 nm AlSb S.L. 20 nm AlSb 15 nm InAs QW 5 nm GaSb Cap 10 nm AlAs 100 nm AlSb 2000 nm GaSb 50 nm AlSb S.I. (100) GaAs Substrate 500 nm GaAs 1000 nm GaSb 2000 nm AlSb 10 x 2.5 nm GaSb / 2.5 nm AlSb S.L. 100 nm AlSb 15 nm InAs QW 5 nm Al 0.5 Ga 0.5 Sb 5 nm GaSb Cap Molecular Beam Epitaxy grown quantum wells

T = 60 mK  sheet = 10 to 150  /□ μ e = 74,000 to 210,000cm 2 / V∙s n e = 5 x to 3 x to cm 2 l = 0.9 to 6  m Measuring 2DEG parameters: mobility and concentration  =8  =6  xx = V xx / I I in I out  xy =V xy / I

Measuring 2DEG parameters: Effective mass Theory: D. Shoenberg, Magnetic oscillations in metals. Cambridge university press (1984). Temperature (K) m*=0.039m e

Magneto-resistance feasurement: Weak anti-localization Asymmetric quantum well Spin-orbit coupling Rashba (  ) Dresselhaus (  ) Lack of inversion symmetry

Measuring 2DEG parameters: Spin-orbit coupling Theory: Iordanskii et al., JETP Lett. (1994), Knap et al. PRB (1996), Lyanda-Geller PRL (1998) Experiment: Miller et al., PRL (2003). Kallaher et al., PRB (2010). …   13±1 meV.Å  425±6 eV.Å 3

2DEG Band structure parameters: E Fermi k F =0.018 Å -1

2DEG Band structure parameters: E Fermi k F =0.018 Å -1

2DEG Band structure parameters: E Fermi k F =0.018 Å -1

ParameterValue α,  spin orbit coupling 10 to 30 meV.Å, 400 to 450 meV.Å 3 gmagnetic moment 15 (from literature) m*effective mass 0.03 to 0.07 m e μeμe electron mobility 60,000 to 210,000 cm 2 / V∙s nene carrier concentration 5x10 11 to 3x10 12 / cm 2 Δ ind induced gap L, W,...geometry Bmagnetic field Conclusion and outlook Come to UC Santa Barbara and visit us