The DFT-calculation of Potassium doped Picene Kotaro Yamada Kusakabe labolatory.

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

A new class of high temperature superconductors: “Iron pnictides” Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
Research Projects Dr Martin Paul Vaughan available from available from
Ab initio calculation of pristine picene and potassium doped picene Kotaro Yamada Kusakabe laboratory Reference: T. Kosugi et al.: J. Phys. Soc. Jpn. 78.
Pressure-Induced Hydrogen-dominant metallic state in Aluminum Hydride HAGIHARA Toshiya Shimizu-group Igor Goncharenko et al., Phy. Rev. Lett. 100,
Superconductivity in Diamond
BiS 2 compounds: Properties, effective low- energy models and RPA results George Martins (Oakland University) Adriana Moreo (Oak Ridge and Univ. Tennessee)
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
Yoshida Lab Tatsuo Kano 1.  Introduction Computational Materials Design First-principles calculation DFT(Density Functional Theory) LDA(Local Density.
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
Convergence with respect the number of k-points: bulk BaTiO 3 Objectives - study the convergence of the different phases of bulk BaTiO 3 with respect the.
Electronic structure of La2-xSrxCuO4 calculated by the
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Advanced Semiconductor Physics ~ Dr. Jena University of Notre Dame Department of Electrical Engineering SIZE DEPENDENT TRANSPORT IN DOPED NANOWIRES Qin.
A1- What is the pairing mechanism leading to / responsible for high T c superconductivity ? A2- What is the pairing mechanism in the cuprates ? What would.
Yoshida Lab M1 Yoshitaka Mino. C ONTENTS Computational Materials Design First-principles calculation Local Density Approximation (LDA) Self-Interaction.
Investigation of fluid- fluid phase transition of hydrogen under high pressure and high temperature 2014/11/26 Shimizu laboratory SHO Kawaguchi.
Theoretical approach to physical properties of atom-inserted C 60 crystals 原子を挿入されたフラーレン結晶の 物性への理論的アプローチ Kusakabe Lab Kawashima Kei.
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) High Pressure Study of Na x TiNCl and CeFe 2.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Magnetic property of dilute magnetic semiconductors Yoshida lab. Ikemoto Satoshi K.Sato et al, Phys, Rev.B
Absorption Spectra of Nano-particles
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Charge Kondo Effect and Superconductivity in Tl-Doped PbTe Y. Matsushita,et.al. PRL 94, (2005) T. A. Costi and V. Zlatic PRL 108, (2012)
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
1 Electronic structure calculations of potassium intercalated single-walled carbon nanotubes Sven Stafström and Anders Hansson Department of Physics, IFM.
Pressure effect on the superconductivity of HgBa 2 Ca 2 Cu 3 O 8+  Shimizu Lab. M1 KAMADA Yukihiro.
Theoretical prediction of structures and properties of lithium under high pressure ( 高圧下におけるリチウムの構造と 物性の理論的予測 ) Yoshida Laboratory Yuya Yamada (山田裕也)
Photoluminescence-excitation spectra on n-type doped quantum wire
Shimizu Lab. M1 Takuya Yamauchi
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
Phase diagram of solid oxygen at low temperature and high pressure
Electronic state calculation for hydrogenated graphene with atomic vacancy Electronic state calculation of hydrogenated graphene and hydrogenated graphene.
The Scientific Method An approach to acquiring knowledge.
Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond
Superconductivity in HgBa 2 Ca m-1 Cu m O 2m+2+δ (m=1,2, and 3) under quasihydrostatic pressures L. Gao et al., Phys. Rev. B 50, 4260 (1994) C. Ambrosch-Draxl.
ON THE INTERPRETATION OF GRAPHITE IMAGES OBTAINED BY STM Constantinos Zeinalipour-Yazdi 1, Jose Gonzalez 2, Karen I. Peterson 2, and David P. Pullman 2.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Band Structure Engineering of Thermoelectric Materials- GeTe Jing ZhiLiang Nov
H.Sakakibara et al., PRB-85, (2012) H.Sakakibara et al., PRB-89, (2014) MORISHITA Naoki Kusakabe laboratory M1 Division of Frontier Materials.
Structural Determination of Solid SiH 4 at High Pressure Russell J. Hemley (Carnegie Institution of Washington) DMR The hydrogen-rich solids are.
Chapter 6 Solid-State Chemistry. Problems n n 6.9, 6.13, 6.14.
From quasi-2D metal with ferromagnetic bilayers to Mott insulator with G-type antiferromagnetic order in Ca 3 (Ru 1−x Ti x ) 2 O 7 Zhiqiang Mao, Tulane.
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
High pressure phase diagram of Beryllium Phys.Rev.B 86,174118(2012) Shimizu Lab. Takuya Yamauchi.
Herringbone Colin Murphy Jan Atomic Packing
Dirac’s inspiration in the search for topological insulators
Thermal Strain Effects in Germanium Thin Films on Silicon Travis Willett-Gies Nalin Fernando Stefan Zollner.
Chapter 7 in the textbook Introduction and Survey Current density:
Carbon Nanotube with Square Cross-section: An Ab Initio Investigation
Graphene doping with single atoms – a theoretical survey of energy surface  Elad Segev and Amir Natan* Department of Physical Electronics , Electrical.
Electrical Properties of Materials
Band structure: Semiconductor
Search of a Quantum Critical Point in High Tc Superconductors
Experimental Evidences on Spin-Charge Separation
Carbon Nanotube Diode Design
Yoshida Lab Tatsuo Kano
Metastability of the boron-vacancy complex (C center) in silicon: A hybrid functional study Cecil Ouma and Walter Meyer Department of Physics, University.
C. Kadow1, H.-K. Lin1, M. Dahlstrom1, M. Rodwell1,
A connectionist model in action
Fig. 3 Realization of the Su-Schrieffer-Heeger (SSH) model.
Electronic Conductivity in Solids
VFB = 1/q (G- S).
Self-Assembled Quantum Dot Molecules Studied by AFM
Fig. 3 Realization of the Su-Schrieffer-Heeger (SSH) model.
VFB = 1/q (G- S).
Presentation transcript:

The DFT-calculation of Potassium doped Picene Kotaro Yamada Kusakabe labolatory

Contents Introduction. ・ experimental article ・ what I can do ・ How to Main part. ・・・ As a result ・ output datum of K 3 Picene. ・ output datum of K 2 Picene Summary & Future work

Experimental article Pristine Picene Kx-Picene (x=3.3) Tc = 18K R. Mitsuhashi, et. al. Nature 464 (2010) 76. introduction

Image of pristine and doped Picene organic semiconductor Superconductor Potassium Picene G. Giovanetti et al.: Phys. Rev. B 83 (2011) introduction

A contraversy Kubozono group “K 3 Picene is superconductor ” Vs Sawa group “most of samples are K 2 Picene and semiconductor by Xray observation” Each statement can’t be denied

What can I do for this subject?? ・ Logical calculation. ・ To interpret the datum ・ To state a hypothesis. introduction

Logical calculation possible model in meta stable state. introduction

How to

input data ・ Relax calculation Atomic structure ・ band calculation band structure Fermi surface Output data Based on the density functional theory. Quantum espresso

Dimensionality of Fermi surface 1dimension 2dimension3dimension

carbon hydrogen Herring bone structure a b c Example of atomic structure

Condition

Unit cell parameter for K 3 Picene Cell parameter 1 monoclinic R. Mitsuhashi, et. al. Nature 464 (2010) 76. Kubozono group presented Unit cell parameter a=8.480,b=6.154,c=13.515in Å

Unit cell parameter for K 2 Picene Cell parameter 2 orthorhombic * 2;T. satou et al.: 物理学会 (2011 秋 ). 24aTD-4 Unit cell parameter a=7.9302,b=7.6386,c= in Å

Unit cell parameter for K 2 Picene Cell parameter 3 orthorhombic * 2;T. satou et al.: 物理学会 (2011 秋 ). 24aTD-4 Sawa group presented Unit cell parameter a=7.9302,b=7.6386,c= in Å

as a result

The structure of K 3 Picene with cell parameter 1 potassium Carbon (Picene) hydrogen a b c a c b

eV eV a* b* c* Γ Y T Z Γ X S R U X

a b a* b* c* Γ Y T Z Γ X S R U X eV

The structure of K 2 Picene with cell parameter2 a bc

eV a* b* c* Γ Y T Z Γ X S R U X

eV Γ Y T Z Γ X S R U X a* b* c*

eV a* b* c* Γ Y T Z Γ X S R U X

The structure of K 2 Picene with cell parameter3

Γ Y T Z Γ X S R U X Cell parameter 3 Cell parameter 2

summary ・ K 2 Picene has narrow band gap ・ K 2 Picene has different band structure in cell parameter ・ in fact potassium atoms may be localized in some layer ・ a slightly doped semiconductor may become a superconductor ・ Find any other possible meta stable state. ・ Find Fermi surface becomes the factor of superconductivity. Future work