XIV International Conference on Economic and Social Development, 2-5 April 2013, Moscow A new copula approach for high-dimensional real world portfolios.

Slides:



Advertisements
Similar presentations
Copula Representation of Joint Risk Driver Distribution
Advertisements

Introduction CreditMetrics™ was launched by JP Morgan in 1997.
VAR METHODS. VAR  Portfolio theory: risk should be measure at the level of the portfolio  not single asset  Financial risk management before 1990 was.
TK 6413 / TK 5413 : ISLAMIC RISK MANAGEMENT TOPIC 6: VALUE AT RISK (VaR) 1.
Financial Risk Management Framework - Cash Flow at Risk
Advanced Risk Management I Lecture 7. Example In applications one typically takes one year of data and a 1% confidence interval If we assume to count.
Chapter 21 Value at Risk Options, Futures, and Other Derivatives, 8th Edition, Copyright © John C. Hull 2012.
ROBERT ENGLE DIRECTOR VOLATILITY INSTITUTE AT NYU STERN THE ECONOMICS AND ECONOMETRICS OF COMMODITY PRICES AUGUST 2012 IN RIO.
VAR.
Chapter 21 Value at Risk Options, Futures, and Other Derivatives, 8th Edition, Copyright © John C. Hull 2012.
Introduction to Algorithmic Trading Strategies Lecture 8 Risk Management Haksun Li
Pair-copula constructions of multiple dependence Workshop on ''Copulae: Theory and Practice'' Weierstrass Institute for Applied Analysis and.
Master thesis presentation Joanna Gatz TU Delft 29 of July 2007 Properties and Applications of the T copula.
Models for construction of multivariate dependence Workshop on Copulae and Multivariate Probability distributions in Finance – Theory, Applications,
Introduction Data and simula- tion methodology VaR models and estimation results Estimation perfor- mance analysis Conclusions Appendix Doctoral School.
Value at Risk Concepts, data, industry estimates –Adam Hoppes –Moses Chao Portfolio applications –Cathy Li –Muthu Ramanujam Comparison to volatility and.
Simulating Exchangeable Multivariate Archimedean Copulas and its Applications Authors: Florence Wu Emiliano A. Valdez Michael Sherris.
CHAPTER 10 Overcoming VaR's Limitations. INTRODUCTION While VaR is the single best way to measure risk, it does have several limitations. The most pressing.
Tests of significance Confidence intervals are used when the goal of our analysis is to estimate an unknown parameter in the population. A second goal.
Topic 2: Statistical Concepts and Market Returns
RISK MANAGEMENT GOALS AND TOOLS. ROLE OF RISK MANAGER n MONITOR RISK OF A FIRM, OR OTHER ENTITY –IDENTIFY RISKS –MEASURE RISKS –REPORT RISKS –MANAGE -or.
KYIV SCHOOL OF ECONOMICS Financial Econometrics (2nd part): Introduction to Financial Time Series May 2011 Instructor: Maksym Obrizan Lecture notes III.
Volatility Chapter 9 Risk Management and Financial Institutions 2e, Chapter 9, Copyright © John C. Hull
Correlations and Copulas Chapter 10 Risk Management and Financial Institutions 2e, Chapter 10, Copyright © John C. Hull
Market Risk VaR: Historical Simulation Approach
Dealing with Heteroscedasticity In some cases an appropriate scaling of the data is the best way to deal with heteroscedasticity. For example, in the model.
Measuring market risk:
Correlations and Copulas 1. Measures of Dependence 2 The risk can be split into two parts: the individual risks and the dependence structure between them.
Options, Futures, and Other Derivatives 6 th Edition, Copyright © John C. Hull Chapter 18 Value at Risk.
Value at Risk.
Are Options Mispriced? Greg Orosi. Outline Option Calibration: two methods Consistency Problem Two Empirical Observations Results.
Alternative Measures of Risk. The Optimal Risk Measure Desirable Properties for Risk Measure A risk measure maps the whole distribution of one dollar.
Irwin/McGraw-Hill 1 Market Risk Chapter 10 Financial Institutions Management, 3/e By Anthony Saunders.
©2003 McGraw-Hill Companies Inc. All rights reserved Slides by Kenneth StantonMcGraw Hill / Irwin Chapter Market Risk.
Elements of Financial Risk Management Second Edition © 2012 by Peter Christoffersen 1 Distributions and Copulas for Integrated Risk Management Elements.
1 Value at Risk Chapter The Question Being Asked in VaR “What loss level is such that we are X % confident it will not be exceeded in N business.
Topic 5. Measuring Credit Risk (Loan portfolio)
Literature Review ZHU Cai AMA. Contents Paper-Searching by Journals 2 Paper -Searching by Authors 3 Results of Elementary Analysis 4 Suggestions 5 Introduction.
Measuring and Forecasting Portfolio Risk on the Romanian Capital Market Supervisor: Professor Moisa ALTAR MSc student: Stefania URSULEASA.
Fundamentals of Futures and Options Markets, 5 th Edition, Copyright © John C. Hull Value at Risk Chapter 18.
Ray Y Chou Institute of Economics Academia Sinica
Value at Risk Chapter 16. The Question Being Asked in VaR “What loss level is such that we are X % confident it will not be exceeded in N business days?”
Market Risk VaR: Historical Simulation Approach N. Gershun.
1 Chapter 9 Hypothesis Testing. 2 Chapter Outline  Developing Null and Alternative Hypothesis  Type I and Type II Errors  Population Mean: Known 
Measurement of Market Risk. Market Risk Directional risk Relative value risk Price risk Liquidity risk Type of measurements –scenario analysis –statistical.
CIA Annual Meeting LOOKING BACK…focused on the future.
Robert Engle UCSD and NYU and Robert F. Engle, Econometric Services DYNAMIC CONDITIONAL CORRELATIONS.
Extreme Value Theory for High Frequency Financial Data Abhinay Sawant April 20, 2009 Economics 201FS.
 Measures the potential loss in value of a risky asset or portfolio over a defined period for a given confidence interval  For example: ◦ If the VaR.
Value at Risk Chapter 20 Options, Futures, and Other Derivatives, 7th International Edition, Copyright © John C. Hull 2008.
Pair-copula constructions of multiple dependence Vine Copula Workshop Delft Institute of Applied Mathematics, 19. November, 2007 Kjersti Aas.
Options, Futures, and Other Derivatives, 5th edition © 2002 by John C. Hull 16.1 Value at Risk Chapter 16.
Options, Futures, and Other Derivatives, 4th edition © 1999 by John C. Hull 14.1 Value at Risk Chapter 14.
Tail Dependence in REITs Returns Kridsda Nimmanunta Kanak Patel ERES Conference 2009, Stockholm, Sweden 24 –
OPTIONS PRICING AND HEDGING WITH GARCH.THE PRICING KERNEL.HULL AND WHITE.THE PLUG-IN ESTIMATOR AND GARCH GAMMA.ENGLE-MUSTAFA – IMPLIED GARCH.DUAN AND EXTENSIONS.ENGLE.
1 VaR Models VaR Models for Energy Commodities Parametric VaR Historical Simulation VaR Monte Carlo VaR VaR based on Volatility Adjusted.
Statistical Decision Making. Almost all problems in statistics can be formulated as a problem of making a decision. That is given some data observed from.
March-14 Central Bank of Egypt 1 Risk Measurement.
Types of risk Market risk
The Three Common Approaches for Calculating Value at Risk
Value at Risk and Expected Shortfall
Portfolio Risk Management : A Primer
Market Risk VaR: Historical Simulation Approach
Types of risk Market risk
Market Risk VaR: Model-Building Approach
Alternative Investments and Risk Measurement
Lecture Notes: Value at Risk (VAR)
Lecture Notes: Value at Risk (VAR)
FORECASTING VOLATILITY I
Measuring Exposure to Exchange Rate Fluctuations
Presentation transcript:

XIV International Conference on Economic and Social Development, 2-5 April 2013, Moscow A new copula approach for high-dimensional real world portfolios Wolfgang Aussenegg, Vienna University of Technology Christian Cech, University of Applied Sciences bfi Vienna

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 2 Introduction We present a new parsimonious approach to calibrate a Student t copula for high dimensional data sets The most widely used market risk model: Variance-Covariance model –serves as benchmark –weaknesses (empirical evidence): daily (univariate) asset returns are not normally distributed but display „heavy tails“ the dependence structure (the copula) is non-Gaussian, as a higher probability of joint extreme co-movements is observed marginal distributions: non-Gaussian C Copula: non-Gaussian multivariate distribution: non-Gaussian

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 3 Introduction Models that use a Student t copula – meta Student t models – seem an appropriate alternative However these models are computationally intensive and hence time-consuming This leads us to propose a parsimonious copula-parameter calibration process where the parameter “degrees of freedom”, , is estimated on the basis of bivariate data-pairs We conduct a hit test for VaR(99%, 1day) estimates –20 years of daily data (n = 4,746), rolling window of 250 trading days –Equally weighted portfolio consisting of 21 financial assets –Models tested Variance-Covariance model meta-Gaussian model new meta-Student t model historical simulation

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 4 Copula approaches The main advantages of copula-based approaches is that they allow for a separate modelling of –the marginal distributions (  financial asset returns) –the copula (  ”dependence structure” or “correlation”) We examine the goodness-of-fit of two elliptical copulas with parameters –Gaussian copula: correlation matrix P –Student t copula: correlation matrix P degrees of freedom (scalar parameter) the lower, the higher is the probability of joint extreme co- movements The Gaussian copula is a special case of the Student t copula where → ∞ Recent studies have shown that the Gaussian copula underestimates the probability of joint severe losses.  use Student t copula

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 5 Student t copula The drawback of the Student t copula is that the calibration is very time-consuming –for high-dimensional data sets and –if is large Small simulation study: Calibration time for Student t copula We simulate random data of 250 sets for different dimensions (Gaussian copula rvs, only one scenario)

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 6 Student t copula

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 7 Estimation of VaR We estimate the 99% 1-day VaR on a daily basis using a rolling window of the 250 most recent observations Variance-Covariance model –Assumes multivariate Gaussian distribution –VaR is estimated on the basis of sample-covariance-matrix (  expected return is ignored) Historical simulation Copula models –Estimate copula parameters with the pseudo-log-likelihood method –Simulate 10,000 scenarios of 21-dimensional copulas –Use the simulated copula scenarios to compute scenarios of a 21- dimensional asset return distribution. Model the marginal distributions as Gaussian-kernel-smoothed distributions based on the 250 most recent observations. –VaR: 1%-quantile of the 10,000 scenario portfolio returns

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 8 Data Daily log returns of 21 financial assets from August 1 st, 1990 to July 30 th, 2010 (n = 4,997) We examine an equally weighted portfolio consisting of these assets Financial assets: –Foreign exchange (3 assets) –Blue-chip stocks (6 assets) –Stock indices (3 assets) –Commodities (3 assets) –Fixed-income instrument with different maturities (6 assets) USD-investor perspective Data source: Thomson Reuters 3000 Xtra

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 9 Data Boxplot of univariate return time series: (one outlier for oil is not shown: %) All time series are leptokurtic excess kurtosis

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 10 Hit test We conduct a hit test to assess the appropriateness of our models We make 4,746 out-of-sample forecasts of the 1% portfolio return quantile (  99% VaR) and count how many times the next day’s portfolio return is below the forecast (“hit”) For a correctly specified model we expect to observe about 47 hits Results Kupiec Hit Test (n = 4,746) Model# hits% hitsKupiec p-value Variance-Covariance911.92%0.00% Meta-Gaussian741.56%0.03% Meta-Student [n=250]691.45%0.33% Meta-Student [n=50]661.39%1.07% Historical Simulation661.39%1.07%

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 11 Hit test The performance of the models varies over time: The main reason for the poor model performance is due to the poor performance of the models in 2008 % hits

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 12 Hit test Results Kupiec Hit Test without 2008 (n = 4,495) In our data sample, the meta-Student t models perform better than the meta-Gaussian model This is because, the degrees of freedom, are explicitly calibrated in the meta-Student t models, while for the meta Gaussian model = ∞  Let us have a closer look at the parameter  ! Model# hits% hitsKupiec p-value Variance-Covariance671.49% 0.21% Meta-Gaussian541.20%18.85% Meta-Student [n=250]531.18%24.06% Meta-Student [n=50]481.07%65.11% Historical Simulation501.11%45.71%

Hit test: parameter Distribution of the bivariate estimates of (n = 996,660) A substantial fraction of estimates is very high, hence the copula resembles a Gaussian copula Fractions: Distribution of those estimates that are low Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 13 model  > 100  > 1,000 n = 25029%26% n = 5045%44%

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 14 Hit test: parameter Evolution of the median of (from 210 daily bivariate estimates)

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 15 Hit test: GARCH (1,1) innovations The results from the hit test for our meta-Student t model are unsatisfactory, as the model should also be consistent in a turbulent market environment (like 2008). Additionally we want to account for volatility clustering and apply the models on innovations of a GARCH(1,1) process. Results Kupiec Hit Test (n = 4,746), GARCH(1,1) innovations Model# hits% hitsKupiec p-value Variance-Covariance651.37% 1.54% Meta-Gaussian521.10%51.42% Meta-Student [n=250]430.91%43.71% Meta-Student [n=50]450.95%71.73% Historical Simulation551.16%28.33%

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 16 Hit test: GARCH (1,1) innovations A significantly larger percentage of hits in 2008 cannot be observed for meta-Student t models % hits

Aussenegg and Cech, A new copula approach for high-dimensional real world portfolios 17 Conclusion 5 models are employed, the widely used Variance-Covariance model serves as benchmark H 0 : “correct model specification” can be rejected at the 5% significance level for all models This is due to the weak performance of all models in 2008 Applying the models to GARCH(1,1) innovations leads to a considerable improvement The weaknesses of the Variance-Covariance models stem from a)an inappropriate modeling of the marginal distributions (i.e. univariate asset return distributions) b)an inappropriate modeling of the ‘dependence structure’ (copula) c)Not accounting for volatility clustering Noteworthy: good performance of the simple historical simulation model. However: Confidence level cannot be higher than 99.6%

XIV International Conference on Economic and Social Development, 2-5 April 2013, Moscow A new copula approach for high-dimensional real world portfolios Wolfgang Aussenegg, Vienna University of Technology Christian Cech, University of Applied Sciences bfi Vienna