The University of Tokyo

Slides:



Advertisements
Similar presentations
Spectroscopy at the Particle Threshold H. Lenske 1.
Advertisements

Marcelo Takeshi Yamashita Instituto de Física Teórica – IFT / UNESP.
HL-3 May 2006Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-3) Structure of nuclei NN potential exchange force Terra incognita in nuclear.
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
The few-body problems in complicated ultra-cold atom system
Study of universal few-body states in 7 Li - open answers to open questions, or everything I have learned on physics of ultracold lithium atoms. (A technical.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
Two- and three-body resonances in the system N.V. Shevchenko Nuclear Physics Institute, Ř e ž, Czech Republic.
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
Numerical Studies of Universality in Few-Boson Systems Javier von Stecher Department of Physics and JILA University of Colorado Probable configurations.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Semi-Classical Methods and N-Body Recombination Seth Rittenhouse ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Efimov States.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
What can we learn about quantum gases from 2- and 3-atom problems? Fei Zhou University of British Columbia, Vancouver at Institute for Nuclear Theory,
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
Chemistry 231 Real Gases. The ideal gas equation of state is not sufficient to describe the P,V, and T behaviour of most real gases. Most real gases depart.
Interatomic Binding Quark binding in nuclear particles Radioactive β-decay Celestial mechanics, Structure of the universe Atomic forces, binding, Optics,
K - pp studied with Coupled-channel Complex Scaling method Workshop on “Hadron and Nuclear Physics (HNP09)” Arata hall, Osaka univ., Ibaraki,
Few-body Physics in a Many-body World
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Role of tensor force in He and Li isotopes with tensor optimized shell model Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN Atsushi UMEYA RIKEN Takayuki.
Yoichi Ikeda (Osaka Univ.) in collaboration with Hiroyuki Kamano (JLab) and Toru Sato (Osaka Univ.) Introduction Introduction Our model of KN interaction.
INTRODUCTION TO PHYSICS OF ULTRACOLD COLLISIONS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 14 February 2008 Institute for.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Experimental study of universal few-body physics with ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel Laboratoire.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Quark binding in nuclear particles Radioactive β-decay Celestial mechanics, Structure of the universe Atomic forces, binding, Optics, electricity,... Binding.
Quantum transport theory - analyzing higher order correlation effects by symbolic computation - the development of SymGF PhD Thesis Defense Feng, Zimin.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Efimov Physics in a Many-Body Background
November 12, 2009 | Christian Stahl | 1 Fermion-Fermion and Boson-Boson Interaction at low Temperatures Seminar “physics of relativistic heavy Ions” TU.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Common Potential Energy Functions of Separation Distance The Potential Energy function describes the energy of a particular state. When given as a function.
20 B Week II Chapters 9 -10) Macroscopic Pressure Microscopic pressure( the kinetic theory of gases: no potential energy) Real Gases: van der Waals Equation.
Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –
Signature of strange dibaryon in kaon-induced reaction Shota Ohnishi A in collaboration with; Y. Ikeda B, H. Kamano C, T. Sato A A; Department of Physics,
Resonance Scattering in optical lattices and Molecules 崔晓玲 (IOP, CASTU) Collaborators: 王玉鹏 (IOP), Fei Zhou (UBC) 大连.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Lecture 16 – Molecular interactions
Lecture 5 Barometric formula and the Boltzmann equation (continued) Notions on Entropy and Free Energy Intermolecular interactions: Electrostatics.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
Lecture 2. Why BEC is linked with single particle quantum behaviour over macroscopic length scales Interference between separately prepared condensates.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Interacting Molecules in a Dense Fluid
Three-body force effect on the properties of asymmetric nuclear matter Wei Zuo Institute of Modern Physics, Lanzhou, China.
K - 4 He  3 He, π-, Λ and some consequences S. Wycech – NCBJ – Warsaw.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Adiabatic hyperspherical study of triatomic helium systems
Possible molecular bound state of two charmed baryons - hadronic molecular state of two Λ c s - Wakafumi Meguro, Yan-Rui Liu, Makoto Oka (Tokyo Institute.
11 Tensor optimized shell model with bare interaction for light nuclei In collaboration with Hiroshi TOKI RCNP, Osaka Univ. Kiyomi IKEDA RIKEN 19th International.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Furong Xu (许甫荣) Many-body correlations in ab-initio methods Outline I. Nuclear forces, Renormalizations (induced correlations) II. N 3 LO (LQCD) MBPT,
Few-Body Models of Light Nuclei The 8th APCTP-BLTP JINR Joint Workshop June 29 – July 4, 2014, Jeju, Korea S. N. Ershov.
NTNU 2011 Dimer-superfluid phase in the attractive Extended Bose-Hubbard model with three-body constraint Kwai-Kong Ng Department of Physics Tunghai University,
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
May the Strong Force be with you
Matter-wave droplets in a dipolar Bose-Einstein condensate
Van der Waals dispersion in density functional theory
Single-particle momentum distributions for bosonic trimer states
DILUTE QUANTUM DROPLETS
Di-nucleon correlations and soft dipole excitations in exotic nuclei
Presentation transcript:

The University of Tokyo Microscopic origin and universality classes of the three-body parameter The University of Tokyo Pascal Naidon Shimpei Endo Masahito Ueda

3 particles (bosons or distinguishable) with resonant two-body interactions single-channel two-body interaction no three-body interaction

The Efimov 3-body parameter Zero-range condition with 𝑎→∞ − 1 𝑅 2 Efimov attraction R x 𝑅 2 = 2 3 ( 𝑥 2 + 𝑦 2 + 𝑧 2 ) Hyperradius The Efimov effect (1970) y z Parameters describing particles at low energy Scattering length a (2-body parameter) 1/𝑎 − - 𝜅 2 𝐸 1/𝑎 𝑎 Three-body parameter trimer Λ −1 3-body parameter dimer

The Efimov 3-body parameter Zero-range condition with 𝑎→∞ − 1 𝑅 2 Efimov attraction R x 𝑅 2 = 2 3 ( 𝑥 2 + 𝑦 2 + 𝑧 2 ) Hyperradius The Efimov effect (1970) y z Parameters describing particles at low energy Scattering length a (2-body parameter) 1/𝑎 − 𝐸 1/𝑎 - 𝜅 2 22.72 𝑎 Three-body parameter trimer dimer Λ −1 3-body parameter

Universality for atoms triplet scatt. length 𝑎 [ 𝑎 0 ] 𝑟 vdW [ 𝑎 0 ] 4He 7Li 6Li 39K 23Na 87Rb 85Rb 133Cs Microscopic determination? no universality of the scattering length r short-range details − 1 𝑟 6 van der Waals Two-body potential Effective three-body potential Hyperradius R short-range details − 1 𝑅 2 Efimov 𝑎 − [ 𝑎 0 ] 𝑎 − ≈−10 𝑟 𝑣𝑑𝑊 𝑟 vdW [ 𝑎 0 ] universality of the 3-body parameter

Three-body with van der Waals interactions Phys. Rev. Lett. 108 263001 (2012) J. Wang, J. D’Incao, B. Esry, C. Greene Lennard-Jones potentials supporting n = 1, 2, 3, ...10 s-wave bound states 𝑎 − ≈−11 𝑟 𝑣𝑑𝑊 − 1 𝑅 2 Efimov Hyperradius R Three-body repulsion at 𝑅≈2 𝑟 𝑣𝑑𝑊

Interpretation: two-body correlation 𝜓 𝑘 =sin (𝑘𝑟 − 𝛿 𝑘 ) Asymptotic behaviour 𝜓 𝑘 𝑉(𝑟) Strong depletion Interatomic separation r Resonance 𝒂→∞ 𝜓 𝑘 𝑉(𝑟) 𝑟 0 ≈ 𝑟 𝑣𝑑𝑊 ∼ 1 2 𝑟 𝑒 = 0 ∞ 𝜓 0 𝑟 2 − 𝜓 0 𝑟 2 𝑑𝑟

Interpretation: two-body correlation Kinetic energy cost due to deformation Excluded configurations induced deformation squeezed equilateral Excluded configurations deformation 〈𝛼〉 Efimov elongated 𝑟 0

Confirmation 1: pair correlation model FModel = FEfimov x j(r12) j(r23) j(r31) (hyperangular wave function) (product of pair correlations) 3-body potential 𝑈 𝑅 = 𝜆 𝑅 2 + 𝑑 cos 𝜃 𝑑𝛼 𝜕Φ 𝜕𝑅 2 Hyperradius R [ 𝑟 0 ] Energy E [ 𝑟 0 −2 ] Pair model (for Lennard-Jones two-body interactions) Exact Efimov attraction

Confirmation 2: separable model Reproduces the low-energy 2-body physics Scattering length Effective range Last bound state …. 𝑉=𝜉 𝜒 〈𝜒| Parameterised to reproduce exactly the two-body correlation at zero energy. 𝜒 𝑞 =1−𝑞 0 ∞ 𝜓 0 𝑟 − 𝜓 0 (𝑟) sin 𝑞𝑟 𝑑𝑟 1/𝑎 − 𝜉=4𝜋 1 𝑎 − 2 𝜋 0 ∞ 𝜒 𝑞 2 𝑑𝑞 −1 - 𝜅 2

Confirmation 2: separable model 𝑎 − 𝑟 𝑣𝑑𝑊 𝑎 − =−10.86(1) 𝑟 𝑣𝑑𝑊 n 𝑉=𝜉 𝜒 〈𝜒| Parameterised to reproduce exactly the two-body correlation at zero energy. Hyperradius R Energy Exact Pair model Separable model Hyperradius R Integrated probability

Confirmation 2: separable model 𝑉=𝜉 𝜒 〈𝜒| Parameterised to reproduce exactly the two-body correlation at zero energy. Other potentials Potential 𝒂 − 𝜿 Yukawa -5.73 0.414 Exponential -10.7 0.216 Gaussian -4.27 0.486 Morse ( 𝑟 0 =1) -12.3 0.180 Morse ( 𝑟 0 =2) -16.4 0.131 Pöschl-Teller (𝛼=1) -6.02 0.367 at most 10% deviation -6.55 -11.0 -4.47 -12.6 -16.3 -6.23 0.204 -0.366 0.472 0.173 0.128 0.350 Separable model Exact calculations S. Moszkowski, S. Fleck, A. Krikeb, L. Theuÿl, J.-M.Richard, and K. Varga, Phys. Rev. A 62 , 032504 (2000).

Summary universal two-body correlation ∼ 𝑟 𝑒 effective range three-body deformation three-body repulsion three-body parameter ∼ 𝑟 𝑒 effective range

Two-body correlation universality classes ∝− 1 𝑟 𝑛 (𝑛>3) Power-law tails Faster than Power-law tails Step function correlation limit Universal correlation 𝜓 0 𝑟 =Γ 𝑛−1 𝑛−2 𝑟/ 𝑟 𝑛 1/2 𝐽 1/(𝑛−2) (2 𝑟/ 𝑟 𝑛 −(𝑛−2)/2 ) Probability density Van der Waals 0.0 1.0 2.0 3.0 4.0 Interparticle distance ( 𝑟 𝑣𝑑𝑊 )

Separable model 3-body parameter in units of the two-body effective range (= size of two-body correlation) Nuclear physics Atomic physics 𝜅=−0.364 1 𝑟 𝑒 2 −1 𝜅=−0.261 1 𝑟 𝑒 2 −1 Binding wave number at unitarity 𝜅=−0.2190 1 𝑟 𝑒 2 −1 ? Number of two-body bound states

Summary The 3-body parameter is (mostly) determined by the low-energy 2-body correlation. Reason: 2-body correlation induces a deformation of the 3-body system. Consequences: the 3-body parameter is on the order of the effective range. has different universal values for distinct classes of interaction P. Naidon, S. Endo, M. Ueda, PRA 90, 022106 (2014) P. Naidon, S. Endo, M. Ueda, PRL 112, 105301 (2014)

Obrigado pela sua attenção!

Separable model 𝑉=𝜉 𝜒 〈𝜒| Parameterised to reproduce exactly the two-body correlation at zero energy. … 𝑎 − 𝑟 𝑣𝑑𝑊