RD51 10-2008. S. Aune CEA/IRFU Micromegas Bulk for CLAS12 vertex tracker.

Slides:



Advertisements
Similar presentations
Results of a R&D Micromegas Bulk Results of a R&D S. Aune a, M. Boyer a, A. Delbart a, R. De Oliveira b, A. Giganon a, Y. Giomataris a A CEA / DAPNIA,
Advertisements

Status of test beam data analysis … with emphasis on resistive coating studies Progress and questions 1Meeting at CEA Saclay, 25 Jan 2010Jörg Wotschack,
Resistive bulks industrialization Status report 2 OCTOBER 2012 Fabien Jeanneau | PAGE 1 RD51 Collaboration meeting | Stony Brook University | October 2012.
Micro MEsh GASeous Detectors (MicroMegas)
Micromegas studies using cosmic rays Franck Sabatié May 7th 2009 Saclay cosmic ray bench Data acquisition system and analysis tools MIP detection Position.
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
Micromegas for CLAS12 Central Detector - Update Franck Sabatié November 19th 2009 Micromegas option for the Central Detector Why, Where, How ? R&D milestones.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
Micromegas detectors for the CLAS12 central tracker Brahim Moreno (for the Saclay group) CLAS12 technical workshop 03/17/ 2010 Jefferson lab Update on.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Micromegas detectors for the CLAS12 central tracker Brahim Moreno (for the Saclay group) CLAS12 central detector meeting : 2 december 2009 Cea Saclay CERN.
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Micromegas TPC Large.
-Stephan AUNE- RD51 Bari 2010 CEA DSM Irfu 08/10/20101 Saclay MPGD workshop.
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
SPHENIX GEM Tracker R&D at BNL Craig Woody BNL sPHENIX Design Study Meeting September 7, 2011.
GainEnergy resolution DIRECTION DES SCIENCES DE LA MATIERE LABORATOIRE DE RECHERCHE SUR LES LOIS FONDAMENTALES DE L’UNIVERS CENTRE DE SACLAY Contact :
Central tracker for 12GeV upgrade in HallB Micromégas : a new detector for CLAS12 Detector’s principle GARFIELD simulation Spatial resolution measurement.
PNPI R&D of the detectors for MUCH E. Chernyshova, V.Evseev, V. Ivanov, A. Khanzadeev, B. Komkov, L. Kudin, V.Nikulin, G. Rybakov, E. Rostchin, V.Samsonov,
1 CLAS12/Central Tracker review. Saclay 12/09 Stéphan AUNE Central Tracker review Micromegas central & forward tracker  R&D and prototypes  CAD implantation.
Mechanical Status of EUDET Module Marc Anduze – 05/04/07.
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
Micromegas modules Towards the 7 module test. Micromegas panels Phase I: ‘Large Prototype’ Micromegas modules were built and tested in beam ( ):
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
Astrophysics Detector Workshop – Nice – November 18 th, D. Attié, P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
F. Sabatié Slides from D. Attié, S. Procureur June 18 th, 2014 Forward-Tagger Tracker – Status & Plan – – Status & Plan –
FIRST TEST RESULTS FROM A MICROMEGAS LARGE TPC PROTOTYPE P. Colas (CEA Saclay), on behalf of the LC-TPC collaboration Micromegas with resistive anode:
GEM Trackers for Super BigBite Spectrometer (SBS) in Hall JLab The Super Big Bite Spectrometer (SBS) is one of the major new equipment in hall A in.
June 22, 2009 P. Colas - Analysis meeting 1 D. Attié, P. Colas, M. Dixit, Yun-Ha Shin (Carleton and Saclay) Analysis of Micromegas Large Prototype data.
M. Bianco On behalf of the ATLAS Collaboration
Update on the Triple GEM Detectors for Muon Tomography K. Gnanvo, M. Hohlmann, L. Grasso, A. Quintero Florida Institute of Technology, Melbourne, FL.
29/09/2010 1Wenxin.Wang_EUDET annual workshop D. Attié, P. Colas, M. Dixit, M. Riallot, YunHa Shin, S. Turnbull, W. Wang and all the LC-TPC collaboration.
PNPI, R&D MUCH related activity ● Segmentation ● Simulation of the neutral background influence ● R&D of the detectors for MUCH ● Preparation to the beam.
Resistive protections Rui de Oliveira 09/12/15
TPC Integration P. Colas (thanks to D. Attié, M. Carty, M. Riallot, LC-TPC…) TPC layout(s) Services Power dissipation Endplate thickness and cost Mechanical.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
S. AUNE 15/09/08 Micromegas Bulk for CLAS12 tracker.
Wenxin Wang 105/04/2013. L: 4.7m  : 3.6m Design for an ILD TPC in progress: Each endplate: 80 modules with 8000 pads Spatial Resolution (in a B=3.5T.
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
P. Colas on behalf of LCTPC. Strategy for Micromegas The Micromegas option is studied within the same (EUDET) facility as the other options (see R. Diener’s.
Micromegas Bulk Demonstrator One type of Bulk: Active area; 115 mm for 288 strips, 500 mm long Material: 100 µm PCB, 5 µm Cu, 18µm mesh, 20µm Mylar Two.
Micromegas for the Central Tracker Sébastien Procureur CEA-Saclay.
Review of Micromegas Tracking Detectors for CLAS12 – May 7, 2009 Reviewers: Madhu Dixit, Mac Mestayer Presentations covered the following topics: –detector.
The BoNuS Detector: A Radial Time Projection Chamber for tracking Spectator Protons Howard Fenker, Jefferson Lab This work was partially supported by DOE.
Zaragoza, 5 Julyl Construction of and experience with a 2.4 x 1 m² micromegas chambers Givi Sekhniaidze On behalf of the Micromegas community.
R&D ON RESISTIVE TECHNOLOGY FOR MICROMEGAS BUKL STEPHAN AUNE 03/06/2015. S.Aune.
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Beam test of the.
RD51 GEM Telescope: results from June 2010 test beam and work in progress Matteo Alfonsi on behalf of CERN GDD group and Siena/PISA INFN group.
NoV. 11, 2009 WP meeting 94 1 D. Attié, P. Colas, E. Ferrer-Ribas, A. Giganon, I. Giomataris, F. Jeanneau, P. Shune, M. Titov, W. Wang, S. Wu RD51 Collaboration.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
1 RD51 Kolimpari June 2009 Stéphan AUNE, BULK lab at Saclay.
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
CALICE, Shinshu, March Update on Micromegas TB analysis Linear Collider group, LAPP, Annecy CALICE collaboration meeting 5-7 March 2012, Shinshu,
Marc Anduze – EUDET Meeting – PARIS 08/10/07 Mechanical R&D for EUDET module.
-Stephan AUNE- RD51 BARI. Saclay MPGD workshop R&D 09/10/20101 Saclay workshop R&D for new Bulk structure.
New MPGDs at CERN PCB Workshop
GEM and MicroMegas R&D Xiaomei Li Science and Technology
Micromegas Vertex Tracker Status Report
FCAL R&D towards a prototype of very compact calorimeter
Commissioning and Calibration Strategies for Micromegas Vertex Tracker
Updates on the Micromegas + GEM prototype
T2K TPC Micromegas Prototype: Test Results on Harp setup
Power pulsing of AFTER in magnetic field
Recents Analysis Results From Micromegas TPC
Saclay MPGD workshop.
Micromegas for CLAS12 – Preliminary work on integration
A DLC μRWELL with 2-D Readout
Presentation transcript:

RD S. Aune CEA/IRFU Micromegas Bulk for CLAS12 vertex tracker

RD S. Aune CEA/IRFU Micromegas for CLAS12 Micromegas (MM) as central tracker for the CLAS12 experience at Jlab in 2014 CAD Study and remote electronic Curved Bulk prototyping and tests – Saclay bulk test 2007 – CERN Prototyping and tests in Saclay 2008 MGPD in 5T field –Lorentz angle study and test First curved: Saclay 2005

RD S. Aune CEA/IRFU Vertex tracker why Gaseous, compared to Si ? Less material (~.0015 L R ) Larger ΔR → same intrinsic momentum and angle resolution for less channels smaller dead zones Cheaper Resistant: “immortal while breathing”

RD S. Aune CEA/IRFU Mixed solution: Silicium + Micromegas bulk Central detector –2 planes of Silicium (X,Y) –3 cylindrical bulks (XY): 3m 2, pitch 0.6 mm,10k channels. Forward detector –4 plane bulks (XY): 1 m 2, 3k channels. 600 mm for  500 mm FVT Silicium target Cylindrical bulks beam Bulk tracker Project for CLAS12 at Jlab

RD S. Aune CEA/IRFU Mechanical & electronic implantation ? Conclusion: Mechanical implantation possible Curved detector for “Y strip” Electronic needs to be remote “As Far As Possible” (compass: 300 mm) –Test done on long kapton braid Study of a ad hoc ASIC for tracker to be decide A CAD study was done with curved detectors. 3 double, X and Y strips at 90°, cylinders around the target with a 3 double end cap.

RD S. Aune CEA/IRFU 3D remote-elec. model Good solution to be validated with long (> 800 mm) electronics braids

RD S. Aune CEA/IRFU Saclay Bulk Lab (2007) PCB used: FR4 from 60 to 200 micron Kapton 25 to 100 micron mesh used: Woven wire 19 micron The thin PCB is transformed in bulk flat and then curved. The Detector are made in a bulk lab using PCB machines design for university. The ability to realize the bulk allowed fast R&D with several configuration

RD S. Aune CEA/IRFU PCB: 100 µm FR4 with 5 µm thick Cu strip 100 µm amplification gap Woven Mesh Gantois non stretched bulk with an array of 400 µm pillar every 2 mm Dimension: 180 mm x 60 mm First curved bulk ( ) Picture: bulk curved, 100 mm radius

RD S. Aune CEA/IRFU First prototype test 15 proto realize, 14 tested  E/E ~ 40% vs 25% on thick bulk 1 er Fe 55 pick on a curved bulk Study for drift pillar

RD S. Aune CEA/IRFU Thin bulk micromegas Prototype made at CERN (2008) Thin bulk (15 x 10-4 LR), long (600 mm) detector with a remote (800 mm) ASIC (AFTER)

RD S. Aune CEA/IRFU PLV1 curved tests One prototype was curved on a Y structure. We obtained a good gain homogeneity and E resolution degrade to 40%. Before drift integration Under test Drift integration

RD S. Aune CEA/IRFU Curved bulk integration

RD S. Aune CEA/IRFU Curved bulk integration Issue to be solved –Temperature curing during bulk fabrication process: differential thermal dilatation on thin PCB –Tension on the mesh vs. curvature Sealed drift –A 100 µm aluminize mylar is silicon glued with a 2 mm thick silicon join on the PCB. Gaz capillary tube glued either on drift or on PCB

RD S. Aune CEA/IRFU Gain on curved bulk First test under way, similar gain behavior with small increases depending of curvature.

RD S. Aune CEA/IRFU Before curvature energy calibration Energy resolution

RD S. Aune CEA/IRFU Energy resolution degraded due to in-homogeneity in the amplification gap % FWHM versus 20% flat Possible solution: Nylon/metal mesh Curved process pcb mesh Curved bulk energy resolution

RD S. Aune CEA/IRFU Flexible cable measurement Different flex PCB cable were realise at CIRE/SPCI:  Strip cables (40cm, 80cm et 80cm U-shaped)  Wire cables (40 cm, 80cm et 80 cm U-shaped) Noise and crosstalk measurement test were conclusive for 800 mm. Flex PCB cable, 80 cm U-shaped Acquisition made with T2K Labview DAQ Software

RD S. Aune CEA/IRFU AFTER signal on the strips Signal Time (x 50 ns) ADC 55 Fe shaped signal Signal - noise Noise Channel time samples

RD S. Aune CEA/IRFU Noise study: preliminary results Pedestal for channel 71

RD S. Aune CEA/IRFU Magnetic environment to deal with : 5 T orthogonal to the detector ! e-e- tanθ = v x B / E Standard conditions : E= 1 kV/cm, v= 8 cm/μsec θ = 75 ° Adapted conditions: E= 10 kV/cm, v= 5 cm/μsec θ = 14° Gaseous detector in 5T field ?

RD S. Aune CEA/IRFU Lorentz angle behaviour with the magnetic field Lorentz angle mesured from the deviation of the B=0T peak Drift distance: 2.25mm The signal spreads out with the Lorentz deviation → increase the resolution B = 0T B = 1.5T Labview DAQ

RD S. Aune CEA/IRFU Lorentz angle behaviour with the drift HV

RD S. Aune CEA/IRFU Out In 400 mm Test at 5T Test done at Jlab on the DVCS magnet. The prototype is fixed on a mobile cart (telescopic slide rail) itself fixed on the magnet. The handcart allows full test in and out without dismounting the detector. Will be used for future 5T with DVCS magnet.

RD S. Aune CEA/IRFU Y cylinder X tile Y connector Y HT cable Y joint Interface attachment to handcart Length: 600 mm Diameter: 180 / 220 mm 1728 Channels Magnet interface (3 Teflon pads) Cylindrical prototype Curved bulk demonstrator