Recent R&D workon Micromegas detector Recent R&D work on Micromegas detector Liang Guan University of Science and Technology of China NanChang.

Slides:



Advertisements
Similar presentations
Results of a R&D Micromegas Bulk Results of a R&D S. Aune a, M. Boyer a, A. Delbart a, R. De Oliveira b, A. Giganon a, Y. Giomataris a A CEA / DAPNIA,
Advertisements

General Characteristics of Gas Detectors
Developments of micromegas detector at CERN/Saclay
Parallel Ionization Multiplier (PIM) : a multi-stage device using micromeshes for tracking particles MPGD’s Workshop at NIKHEF April 16th2008 April 16th.
Micro MEsh GASeous Detectors (MicroMegas)
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Practical operation of Micromegas detectors
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
Prototype TPC Tests C. Lu 12/9/98 V = 0. Gas gain test for the low pressure chamber The chamber is constructed with the following parameters: D anode.
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
Proportional Counters
Micro Pattern Gas Detector Technologies and Applications The work of the RD51 Collaboration Marco Villa (CERN), Andrew White (University of Texas at Arlington)
Xiaodong Wang ( 王晓冬 ) School of Nuclear Science and Technology Lanzhou University, Lanzhou, China MPGD activities at Lanzhou University July 5, 2013.
1 Micromegas TPC R&D P. Colas. 2 R&D in progress and to be planned for R&D in progress and to be planned for Present collaborations NIKHEF, CERN workshop,
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Micromegas TPC Large.
Measurement of gas gain fluctuations M. Chefdeville, LAPP, Annecy TPC Jamboree, Orsay, 12/05/2009.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
Practical operation of Micromegas detectors Paul Colas, CEA/Irfu Saclay CERN, Feb.17, 20091Practical operation of Micromegas.
Status of PNPI R&D for choice of the MUCH tracking base detector (this work is supported by INTAS) ■ Introduction ■ MICROMEGAS ■ GEM ■ MICROMEGAS+GEM ■
The work of GEM foil at CIAE
WG1 summary P. Colas, S. Duarte Pinto RD51 Collaboration meeting in Bari October 7-10, 2010.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
GainEnergy resolution DIRECTION DES SCIENCES DE LA MATIERE LABORATOIRE DE RECHERCHE SUR LES LOIS FONDAMENTALES DE L’UNIVERS CENTRE DE SACLAY Contact :
D. Attié CEA Saclay/Irfu RD51 – ALICE Workshop June 18 th, 2014 ILC-TPC Micromegas: Ion Backflow Measurements.
EST-DEM R. De Oliveira 20 Dec., ‘04 Production of Gaseous Detector Elements  History of Gas Detectors in Workshop  Fabrication of GEM Detectors  Fabrication.
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
Geant4 Simulation of Neutrons interaction with GEM-foil and gas Gabriele Croci, Matteo Alfonsi, Serge Duarte Pinto, Leszek Ropelewski, Marco Villa (CERN)
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
Ionization Detectors Basic operation
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
Piggyback seal Micromegas D. Attié, A. Chaus, D. Durand, D. Deforges, E. Ferrer Ribas, J. Galán, I.Giomataris, A. Gongadze, F.J. Iguaz, F. Jeanneau, R.
M. Bianco On behalf of the ATLAS Collaboration
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
PNPI R&D on based detector for MUCH central part (supported by INTAS ) E. Chernyshova, V.Evseev, V. Ivanov, A. Khanzadeev, B. Komkov, L.
IHEP, Beijing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
A TPC for ILC CEA/Irfu, Apero, D S Bhattacharya, 19th June Deb Sankar Bhattacharya D.Attie, P.Colas, S. Ganjour,
RD51 Collaboration: Development of Micro-Pattern Gaseous Detectors technologies Matteo Alfonsi (CERN) on behalf of RD51 Collaboration Current Trends in.
PNPI, R&D MUCH related activity ● Segmentation ● Simulation of the neutral background influence ● R&D of the detectors for MUCH ● Preparation to the beam.
Plans for MPGD Radiation hardness tests for full detectors and components Matteo Alfonsi,Gabriele Croci, Elena Rocco, Serge Duarte Pinto, Leszek Ropelewski.
Performance Studies of BULK Micromegas with Different Amplification Gaps Purba Bhattacharya 1, Sudeb Bhattacharya 1, Nayana Majumdar 1, Supratik Mukhopadhyay.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
EUDET Meeting, Munich – October 18, Ongoing activities at Saclay David Attié D. Burke; P. Colas; E. Delagnes; A. Giganon; Y. Giomataris;
Beam Test of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System Vallary Bhopatkar M. Hohlmann, M. Phipps, J. Twigger, A.
MPGD (RD-51) Workshop Nikhef, Amsterdam, April Penning Effect on Gas Amplification Factor Ozkan SAHIN Uludag University Physics Department.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
NoV. 11, 2009 WP meeting 94 1 D. Attié, P. Colas, E. Ferrer-Ribas, A. Giganon, I. Giomataris, F. Jeanneau, P. Shune, M. Titov, W. Wang, S. Wu RD51 Collaboration.
Endplate meeting – September 13, Gas issues for a Micromegas TPC for the Future Linear Collider David Attié D. Burke; P. Colas;
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
R&D Collaboration, CERN – September 10, Micromegas Performance and Ageing studies David Attié MPGD. Towards an R&D Collaboration,
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
Energy resolution results for Microbulk MICROMEGAS at high energy and pressure. Alfredo Tomás Alquézar Universidad de Zaragoza on behalf of the collaboration.
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
GEM and MicroMegas R&D Xiaomei Li Science and Technology
Jianxin FENG1,2, Zhiyong ZHANG1, Binbin QI1, Libo WU1, Chengming LIU3
Liang Guan1, ZhiYong Zhang1, XiaoLian Wang1, ZiZongXu, TianChi Zhao2
Development of Resistive Plate Chamber for charge particle detection
A DLC μRWELL with 2-D Readout
Presentation transcript:

Recent R&D workon Micromegas detector Recent R&D work on Micromegas detector Liang Guan University of Science and Technology of China NanChang University Center for particle physics and technology Joint Laboratory of Technologies of Particle Detection and Electronics

April,2010 NanChang University 1 Outline  Introduction  Simulation  Prototypes fabrication  Test Results  Summary Liang Guan

April,2010 NanChang University 2 Introduction Liang Guan

3 April,2010 NanChang University Traditional Gaseous detector MWPC faces problems: Rate capability restrained by space charge effect Spatial resolution limited by wire pitch Micromegas (Micro Mesh gaseous structure)  Invented in1996 by Y. Giomataris et al,CEA Saclay, France Nuclear Instruments and Methods in Physics Research A 376 (1996) Development of Micromegas Micromegas Working principle Liang Guan

4 April,2010 NanChang University Development of Micromegas high rate capability > 10 8 mm -2 s -1 space resolution ~  m energy resolution time resolution radiation hardness simple structure Y. Giomatarisa NIM A 419 (1998) J. Derre& et al. NIM A 459 (2001) Leszek Ropelewski (CERN) et al. 94th LHCC Committee Meeting, July A. Delbart et al. NIM A 461 (2001) Liang Guan

5 April,2010 NanChang University Introduction: Application of Micromegas COMPASS CAST 40cm*40cm 7cm*7cm NA48/KABES beam spectrometerThe T2K ND-280 TPC Future application: ILC TPC, LHC upgrade, Neutron detection… 34 cm x 36 cm Liang Guan

April,2010 NanChang University 6 Simulation Liang Guan

7 April,2010 NanChang University de Broglie wavelength of electron can be compared with the radius of noble gas atom undergo a phase shift when passing through the strong attractive field around the atom and results in low interaction cross-section, long mean free path ~0.24eV Ramsauer Dip in Argon+Isobutane Electron thermic energy Gas Properties Ar 90 <- 95 Ar 100% Ar/iC 4 H 10 90/10 Magboltz Ar/iC 4 H 10 96/4 Liang Guan

8 April,2010 NanChang University Gas Properties Ar90% Iso10% Drift velocity Magboltz Liang Guan

April,2010 NanChang University Gas Properties Excitation rate & Penning transfer 1 atm Pressure Argon: 15.7eV Isobutane: 10.67eV Magboltz Liang Guan 9

10 April,2010 NanChang University Field, Drift, ionization [Drift Gap:3mm, Avalanche Gap:120mm, Vava= -500V, field ratio 200] R-T relation Electron drift velocity Liang Guan

11 April,2010 NanChang University Signal Pad 1Pad 2 Pad 3Pad 4Pad 5 Signal on 5 readout pads 5.9 keV x-ray Track, cluster, drift lines Weighting field Reciprocity theorem Ramo theorem Pad 1 Ar/iC 4 H 10 90/10 Vmesh=400 Field ratio 200 Liang Guan 250  m 100  m

April,2010 NanChang University 12 Prototypes Liang Guan

13 April,2010 NanChang University Review Different materials mesh: grid by chemical etching, electroformed … (stainless steel, copper, nickel, gold… ) woven wires (nickel, copper, stainless steel) spacer: quartz fibers, pillars by photo-lithography (mainly used), Kapton ring, fishing line… Different technologies Bulk Microbulk Standard lithography and kapton etching InGrid Lithography & woven mesh CMOS compatible InGrid technology Liang Guan

14 April,2010 NanChang University Thermo-bond film An novel idea to construct amplification gap in Micromegas: use Thermo-bond film Thermo-bond film  adhesive bonding film, flexible & insulating  usually made of a substrate sandwiched by two bond lines or only two bond lines attached together side by side  solid at room temperature, melt & becomes adhesive after heat is applied. Features  various thickness: 80  m,125  m,155  m,160  m…  good mechanical property: tensile thousand psi  softening temperature ℃  dielectric property: dielectric constant ~2.4, volume resistivity>10 17 ohm/mil  excellent metal adhesion  uniform adhesive thickness Proposed by Prof. T.C. Zhao Liang Guan

15 April,2010 NanChang University Thermo-bond film Motivation and prospects Possible to use such kind of film to build detector without internal solid state support structure No internal dead area Nuclear medical imaging Possible to make detector with large sensitive area Possible to make multi-layer parallel mesh chamber Quick, Easy fabrication, Economical The detection of low cross- section or rare processes (dark matter, double beta decay…) Liang Guan

16 April,2010 NanChang University Prototype Fabrication 350LPI mesh Mesh stretching Thermal attaching sensitive area: 45mm*45mm Thermo-bond film thickness: 155mm (width for each side:7mm), also tried other films… Avalanche, drift mesh: 350LPI woven wire mesh Drift region: 9mm Avalanche region thickness: 130mm Readout: 9 Pads(15mm*15mm) connected in parallel Drift electrode “Bulk” avalanche region Frame Assembling Liang Guan

17 April,2010 NanChang University Experimental Setup  Drift mesh -HV Avalanche mesh -HV Readout Pad Ortec142AH Ortec 855 spectroscopy amplifier MCA Computer HV Supplier 55 Fe Gas input Gas output R Sketch map of testing system Electronic calibration Pulse: rise time 100  s,Period>3ms Calibration for 10 times Head amp. Pulse Liang Guan

April,2010 NanChang University 18 Test Results Liang Guan

19 April,2010 NanChang University HV Plateau & Counting rate Test at Ar96% Iso4% gas mixture, MCA cut:150th channel, test time: 100sTest at Ar96% Iso4% gas mixture, Vmesh=400, Vdrift=613, Head Amp=20 Liang Guan

20 April,2010 NanChang University Electron transparency Ar80Ar90Ar94Ar95 Liang Guan By Guo Junjun * For high field ratio-> Diffusion, attachment in drift region Field ratio: E ava /E drift

21 Gas Gain Energy linearity Gain as a function of mesh HV 155  m  Gas gain of more than2*10 4 has been achieved N: electron # collected at the anode N 0 : # of electrons generated in the conversion (drift) gap by 5.9KeV   Electron transparency (assume 100% for 350LPI mesh) Liang Guan

22 April,2010 NanChang University 1.109(Exp) 13.7% (FWHM) Photo-peak ratio: 1.102(Theory) Best energy resolution K     Energy resolution for 5.9 keV x-ray can be better than 20% over one order of magnitude in gain  Deterioration of energy resolution for argon-rich gas mixture: influence of polyatomic molecular Energy resolution S. Behrends and A.C. Melissinos, NIM A 1889 (1981) Liang Guan

23 April,2010 NanChang University Summary  Simulation study: Ramsauer Dip in Argon/iC 4 H 10, penning transfer etc.  A novel idea: use thermo-bond films to separate avalanche mesh from anode plane.  Gas Gain>3.7*10 4, Energy resolution better than 13.7%.  Continues efforts should be made to systemically study performances of detectors with other films. Also try to make large size prototypes. Liang Guan

Thank you !

April,2010 NanChang University Back up Liang Guan

Penning transfer

Penning transfer---sim &exp Gas comp.Ar* (%) Ar+Iso Ar+Iso Ar+Iso Ar+Iso Ar+Iso Ar+Iso * Higher Isobutane concentration lead to higher penning transfer prob.

Penning transfer Where penning transfer start Ar+Iso10% (38% Ar*) Ar+Iso10% Ar+Iso20% (40% Ar*) Ar+Iso20% Where penning transfer start

April,2010 NanChang University Back up Liang Guan MeshWire diameter (  m) Hole size (  m) 350LPI (tabby) LPI (tabby) LPI (diagonal) LPI (diagonal) Mesh parameters

April,2010 NanChang University Back up signal Liang Guan