Neutrino Mass Determination from Tritium-  -decay : From Mainz to KATRIN Björn Flatt SLAC, 05.04.2005 Motivation Neutrino mass determination.

Slides:



Advertisements
Similar presentations
Radioactivity.
Advertisements

I want thank Aldo Covello for the 11 Spring Seminars on Nuclear Physics in nice areas of the Sorrento Peninsula and the Islands. I was participating in.
outline introduction experimental setup & status
Absolute neutrino mass determination with the experiment KATRIN
HQL2004 June 1. Jochen Bonn Institut für Physik, Johannes Gutenberg-Universität, Mainz, Evidence for neutrino masses Neutrino mass measurements Tritium.
1 CRACOW EPIPHANY CONFERENCE ON NEUTRINOS AND DARK MATTER January 2006, Cracow, Poland ● Introduction ● Neutrino mass determination ● The Karlsruhe.
SUMMARY – SESSION NU-3 ABSOLUTE NEUTRINO MASS SNOWMASS 2013, MINNEAPOLIS AUG 2, 2013 Hamish Robertson, University of Washington Convenors: Ben Monreal,
AMBER - A novel, non-invasive approach to direct neutrino mass measurement J.A.Thornby, M.J.Hadley, A.Lovejoy, Y.A.Ramachers Department of Physics, University.
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
April-June )Oscillations: 2)Kinematics in weak decays: 3) 0 double beta decay: ?
Accurate  Spectroscopy for Ultracold Neutrons Jeff Martin University of Winnipeg See also: J.W. Martin et al, Phys. Rev. C (2006) J.W. Martin.
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
Outline Directness? The Various Techniques: for completeness Astrophysics/Cosmology (very short) Nuclear and Particle Physics: heart of the talk beta decay.
Photoelectron Spectroscopy Lecture 7 – instrumental details –Photon sources –Experimental resolution and sensitivity –Electron kinetic energy and resolution.
Daniele Pergolesi, Institut d’Astrophysique de Paris, Nov 14 th The MARE experiment on direct measurement of neutrino mass Daniele Pergolesi UNIVERSITY.
Radioactive Ion Beam (RIB) Production at ISOLDE by the Laser Ion Source and Trap (LIST) Sven Richter for the LIST-, RILIS- and ISOLDE IS456 Collaborations.
Superconductivity and Superfluidity The London penetration depth but also F and H London suggested that not only To which the solution is L is known as.
Atmospheric Neutrino Oscillations in Soudan 2
Hamish Robertson, CENPA, University of Washington Direct probes of neutrino mass Neutrino Oscillation Workshop NOW2014, Otranto Italy Sept. 8.
Direct Determination of Neutrino Mass
I. Giomataris Large TPCs for low energy rare event detection NNN05 Next Generation of Nucleon Decay and Neutrino Detectors 7-9 April 2005 Aussois, Savoie,
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
 A GEANT4-based simulation was performed of the production target, solenoid, selection channel, and spectrometer.  The acceptance was found to be 8.3x10.
KATRIN - Karlsruhe Tritium Neutrino Experiment - measuring sub-eV neutrino masses G. Drexlin, FZ Karlsruhe for the KATRIN Collaboration International Europhysics.
KATRIN - The Karlsruhe Tritium Neutrino Experiment The Karlsruhe Tritium Neutrino Experiment H.H. Telle Department of Physics, University of Wales Swansea.
25/07/2002G.Unal, ICHEP02 Amsterdam1 Final measurement of  ’/  by NA48 Direct CP violation in neutral kaon decays History of the  ’/  measurement by.
Scanning Electron Microscope (SEM)
NuFact 2011 Imperial College/RAL Dave Wark Experimental Status of Neutrino Physics Dave Wark Imperial/RAL NuFact 2011 Geneva August 1 st, 2011.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Can we look back to the Origin of our Universe? Cosmic Photon, Neutrino and Gravitational Wave Backgrounds. Amand Faessler, Erice September 2014 With thanks.
FLAR project S.L. Yakovenko JINR, Dubna,Russia. 2 Contents 1.FlAIR project 2.AD facility at CERN 3.Antyhydrogen and Positronium in-flight at FLAIR 4.LEPTA.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Context: astroparticle physics, non-accelerator physics, low energy physics, natural sources physics, let’s-understand-the-Universe physics mainly looking.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
Neutrino Oscillations in vacuum Student Seminar on Subatomic Physics Fundamentals of Neutrino Physics Dennis Visser
NEUTRINO MASS STUART FREEDMAN MEMORIAL SYMPOSIUM BERKELEY, JAN 11, 2014 Hamish Robertson, University of Washington a long wait for a little weight.
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
Absolute neutrino mass scale and the KATRIN experiment Otokar Dragoun for the KATRIN Collaboration Nuclear Physics Institute of the ASCR, Řež
RPCs of BESIII Muon Identifier  BESIII and muon identifier  R&D  Mass production  Installation Zhang Qingmin Advisor: Zhang Jiawen.
Hamish Robertson, CENPA, University of Washington Progress toward measuring the mass of the neutrino The Ohio State University, February 3, 2015.
A mass-purification method for REX beams
The KATRIN experiment M. Beck Institut Für Kernphysik Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-str Münster Motivation The Experiment.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
New Results from the Salt Phase of SNO Kathryn Miknaitis Center for Experimental Nuclear Physics and Astrophysics, Univ. of Washington For the Sudbury.
Experimental methods for direct measurements of the Neutrino Mass Part - 1 Como – 30/05/2006.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
Gravitational Experiment Below 1 Millimeter and Search for Compact Extra Dimensions Josh Long, Allison Churnside, John C. Price Department of Physics,
X-ray absorption spectroscopy (XAS)
John Thornby 4 th April Development of a Novel Charge Spectrometer IoP Nuclear and Particle Physics Divisional Conference John Thornby University.
T2K Status Report. The Accelerator Complex a Beamline Performance 3 First T2K run completed January to June x protons accumulated.
THIN FILMS FOR CLIC ELEMENTS Outline Motivation The role of MME-CCS DB and MB transfer lines Main beam Main beam quadrupoles Other issues conclusions CLIC.
Klaus Eitel, Forschungszentrum Karlsruhe IDM 2004, Edinburgh, September 6-10, 2004 Direct Measurements of the Neutrino Mass Klaus Eitel Forschungszentrum.
(Germanium Experiment for measurement of Magnetic Moment Antineutrino)
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
KIT - The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) Florian Fränkle EPS HEP 2009 Krakow 1 KATRIN: An experiment to.
Mg Films Grown by Pulsed Laser Deposition as Photocathodes: QE and surface adsorbates L. Cultrera INFN – National Laboratories of Frascati.
Neutrino physics: The future Gabriela Barenboim TAU04.
The KATRIN Neutrino Mass Experiment
Traps for antiprotons, electrons and positrons in the 5 T and 1 T magnetic fields G. Testera & Genoa group AEGIS main magnetic field (on axis) : from Alexei.
Kinematic Determination of Neutrino Mass
Physics with the ICARUS T1800 detector
Neutronics Studies for the Nab Experiment
Amand Faessler, Erice September 2014
Three roads to neutrino masses
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
KATRIN: A next generation neutrino mass experiment
Study of the 3He-η System in d-p Collisions
Design, development and test experiments for the Rearsection of KATRIN
Presentation transcript:

Neutrino Mass Determination from Tritium-  -decay : From Mainz to KATRIN Björn Flatt SLAC, Motivation Neutrino mass determination Tritium-  -decay Electrostatic spectrometers The Mainz Neutrino Mass Experiment The KATRIN Experiment

2 Neutrino mass oStandard Model:Neutrinos are massless oEvidence for massive neutrinos: oscillation experiments oAtmospheric neutrinos: SuperKamiokande (1998), … oSolar Neutrinos: Homestake, …, SNO Oscillations confirmed by KamLAND (reactor neutrinos)  m 2 solar  m 2 atmos Problem: sensitive to  m ij ²= m i ²- m j ² not to the absolute mass scale quasi degenerate hierarchical

3 Neutrinos in Cosmology & Astrophysics ocontribute to Dark Matter (N = 10 9 N B ) oinfluence structure formation in the universe oneutrinos from supernovae oneutrinos as origin of UHECR oDirect determination of the absolute neutrino mass scale needed! 

4 Neutrino mass determination Time of flight measurements of Supernovae ->but when??? Kinematics of  -decay: model independent: no cancellations m 2 ( e ) =  |U ei 2 | m 2 ( i ) : incoherent sum 0  decay : need:a) = (Majorana) b) helicity flip : m( )  0 (or other new physics) m ee ( ) = |  |U ei 2 | e ia(i) m( i )|

5 Direct neutrino mass determination oInvestigation of the endpoint region of the Tritium-  -spectrum dN/dE = K × F(E,Z) × p × E tot × (E 0 -E e ) × [ (E 0 -E e ) 2 – m 2 ] 1/2 strong source high luminosity high energy resolution long term stability low background rate observable

6 History of -mass from tritium-decay problem of early 90‘s: negative m ² -magnetic spectrometers yield negative results -electrostatic spectrometers has problems in the beginning (early 90‘s) -reason: underestimated energy losses -MAINZ: roughening transition inside the solid source  lower temperatur -TROITSK: energy loss due to scattering in the gaseous source

7 MAC-E-Filter Two superconducting solenoids compose magnetic guiding field Electron source (T 2 ) in left solenoid adiabatic transformation: µ= E ┴ /B = const.  parallel e - beam Energy analysis by electrostat. retarding field Energy resolution:  E = B min /B max  E 0

8 The Mainz -mass experiment source: frozen T 2 on HOP graphite T=1.86K A=2cm 2, d~130ML (~45nm) 20mCi activity spectrometer: l=4m, Ø=0.9m  E=4.8eV

9 Higher spectrometer energy resolution  E: 6.5 eV  4.8 eV More stable background: HF-Pulses on electrode inbetween measurements Lower T 2 film temperature: T = 1.86K (instead former > 3K) (undefined losses) (problems in 1991 and 1994) (  negative m²( ) problem) L. Fleischmann et al., J. Low. Temp. Phys. 119 (2000) 615, L. Fleischmann et al., Eur. Phys. J. B16 (2000) 521 Measurements month measurement time improvement of signal: * 5 reduction of background: * 2   Signal/background 10 times higher

10 Results from Mainz 1998/1999/2001:m²( ) = -0.6 ± 2.2 ± 2.1 eV²  m( )< 2.3 eV (95% C.L.)  sensitivity limit reached C.Kraus, …, B. Flatt, …,et al. accepted by Eur. Phys. J C, hep-ex/ ,

11 Trend towards „negative m 2 ( )“  missing energy loss Former problem of negative m²( )

12 Former problem of negative m²( ) Trend towards „negative m 2 ( )“ not in 1998/1999 data anymore,  missing energy lossroughening transition avoided by T < 2 K  No problem in Mainz data (from Q5/1998)

13 C.Kraus, EPS HEP03, Aachen, July 2003 B. Bornschein et al., J. Low Temp. Phys., 131 (2003) 69 Determination of neighbour excitation from Mainz tritium data NEW Investigation and improvement of systematics

14 The Troitsk Neutrino Mass Experiment Gaseous T 2 source MAC-E-Filter energy resolution :  E = 3.5eV 3 electrode system in 1.5m diameter UHV vessel (p<10 -9 mbar) column density: cm -2 luminosity: L = 0.6cm 2 (L =  * A source )

15   qU Troitsk anomaly: step in countrate a few eV below endpoint = monoenergetic line in  spectrum - rel. amplitude position varies with 0.5y - period (up to 2000) The Troitsk anomaly Describing anomaly phenomenologically by additional line, different run-by-run Troitsk ,2001 data: m²( ) = -2.3 ± 2.5 ± 2.0 eV 2  m( )< 2.05 eV (95% C.L.) (step effect without additional systematic uncertainty) V.M. Lobashev et al., Phys. Lett. B460 (1999) 227 not confirmed by Mainz Simultanous measurements and Signal for anomaly in Troitsk, but not in Mainz  experimental artefact

16 Parallel measurements in 2000 No hint in Mainz data  must be apparative effect (local in Troitsk)

17 Summary osensitivity limit reached oupper limit: 2.3 eV (95% C.L.) osystematic effects understood otroitsk anomaly must be apparative effect opublication coming soon (hep-ex/ )

18 From current to future experiments Mainz:Troitsk: m 2 = -0.6 ± 2.2 ± 2.1 eV 2 m 2 = -2.3 ± 2.5 ± 2.0 eV 2 m < 2.3 eV (95%CL) m < 2.1 eV (95%CL) V. Lobashev, private communication (allowing for a step function near endpoint) aim:improvement of m by one order of magnitude (2eV  0.2eV )  improvement of uncertainty on m 2 by 100 (4eV 2  0.04eV 2 ) statistics: stronger Tritium source (>>10 10  ´s/sec) longer measurement (~100 days  ~1000 days) energy resolution:  E/E=B min /B max  spectrometer with  E=1eV  Ø 10m UHV vessel

19 owindowless, gaseous tritium source o  9cm,  d = 5  molecules/cm 2, B s = 5,6T  90% of saturation (limited by inelastic scattering) oprespectrometer oreduction of countrate in the mainspectrometer omoderate resolution, high pass filter  MAC-E-Filter omain spectrometer oenergy analysis with high resolution  E  0.93 eV, B min  T  MAC-E-Filter odimensions are given by conservation of magnetic flux Aim: sensitivity on m( e ) in sub-eV range model independent! The KArlsruhe TRItium Neutrinoexperiment KATRIN

20 Forschungs Zentrum Karlsruhe ~70 m beamline, 40 s.c. solenoids

21 Windowless gaseous tritium WGTS parameters: total length l = 10m, inner diam. Ø = 90mm, B source = 3.6T, isotopic purity > 95% T 2 T = (27± 0.03)K

22 WGTS parameters p inj = 3.0 × mbar ( at T=27K) q inj = 1.85 mbar l/s = mol./s = 4.7 Ci/s (~ 40g T 2 per day if no closed loop) isotopic purity (±2‰) monitored by Laser Raman spectroscopy

23 Electrostatic spectrometers electrostatic pre-filtering & analysis of tritium ß-decay electrons ~10 10  ´s/sec ~10 3  ´s/sec ~10  ´s/sec (qU=E 0 -25eV)

24 The main spectrometer o stainless steel vessel (Ø=10m & l=22m) on HV potential o minimisation of bg  UHV: p ≤ mbar  „massless“ inner electrode system UHV requirements: outgassing < mbar l/s inner surface ~ 800m 2 volume to pump ~ 1500m 3

25 KATRIN sensitivity 2× stronger gaseous source (Ø=75mm  Ø=90mm) required Ø=10m spectrometer) optimised measuring point distribution (~5 eV below E 0 ) active background reduction by inner electrode system, low background detector (needs further detailed tests) design optimisation ´01  ´03 

26 Discovery potential m < 0.2eV (90%CL) m = 0.35eV (5  ) m = 0.3eV (3  ) sensitivity discovery potential expectation: after 3 full beam years  syst ~  stat

27 Background in MAC-E-Filters MAC-E-Filter collects low energetic e - at detector e - are created (with low energy E S ) at potential U S background: E S + qU S  qU A signal: E ≥ qU A impossible to distinguish signal from background electrons! (due to limited energy resolution of detector) E S, U S

28 Origin of background electrons oelectrode surface osecondary electrons ocosmic rays oradioactive inclosures… ofield emission, discharges magnetic and active elektric shielding ospectrometer volume otritium decay in the spectrometer oscattering of ß-electrons on residual gas oscattering of trapped electrons on residual gas good vacuum, avoid traps, remove electrons from traps

29 Magnetic shielding adiabatic movement of electrons: guidance along magnetic field lines magnetic mirror  intrinsic background supression not completely: shown by experiment: missing supression  reason: deviation from axi-symmetry in setup (numeric investigations: F.Glück)  U e-e- B 

30 New: electric shielding   U-  U U e-e- secondaries from the electrode surface (cosmic muons, radioactive inclosures,…) are shielded by a grid on a slightly more negative potential than the electrode First realization 2002 Background reduction by factor 3 X-ray induced background Screen potential 100V X-ray induced background no shielding Detektorsegment 3 18,6 keV

31 Modification of the Mainz setup: Mainz V (almost) complete coverage of solid electrodes by wire elctrodes can be used in dipolar mode electrodes on ground potential 142 wires,  0,2 mm, 2 cm distance l=264,8 cm r 1 =19,7 cm r 2 =41,5 cm

32 Die Mainz V Elektrode 5 cm

33 background measurements with Mainz V ovariation of shielding potential odependence on magnetic feild oB = 1,7 T: 4.1 mHz oB = 5,1 T: 2.8 mHz odetector background: 1.6 mHz  background from spectrometer : 1.2 mHz lowest background rate in a MAC-E-Filter! B.Flatt et al. publication in preperation

34 Electrodes for the prespectrometer built at University of Washington split electrodes, useable in dipolar mode (remove trapped particles)

35 The prespectrometer

36 Summary technical design report available for download : www-ik.fzk.de/katrin/publications/index.html o absolute neutrino mass of prime importance o MAC-E spectrometers (Mainz, Troitsk) o m <2.3eV(95%CL) (sensitivity limit) o KATRIN sensitivity m <0.2eV(90%CL) o discovery potential m =0.35eV at 5  o design optimized; first components; o commissioning in 2008

37 The KArlsruhe TRItium Neutrinoexperiment KATRIN Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft