3D simulations of device performance for 3D-Trench electrode detector Jianwei Chen a,b, Hao Ding a,b, Zheng Li a,b,c, *, Shaoan Yan a,b a Xiangtan University,

Slides:



Advertisements
Similar presentations
of Single-Type-Column 3D silicon detectors
Advertisements

Radiation damage in silicon sensors
Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance at Extreme Hadron Fluence G. Lindström (a), E. Fretwurst (a), F. Hönniger.
Università degli Studi di Perugia Università degli Studi di Perugia IMM Bologna 1 Measurements and Simulations of Charge Collection Efficiency of p+/n.
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Modeling and simulation of charge collection properties for 3D-Trench electrode detector Hao Ding a, Jianwei Chen a, Zheng Li a,b,c, *, Shaoan Yan a a.
Radiation Damage to Silicon Sensors DCC 11/14/02 DRAFT.
Hartmut Sadrozinski US-ATLAS 9/22/03 Detector Technologies for an All-Semiconductor Tracker at the sLHC Hartmut F.W. Sadrozinski SCIPP, UC Santa Cruz.
1 Observation of Gamma Irradiation-Induced Suppression of Reverse Annealing in Neutron Irradiated MCZ Si Detectors Zheng Li 1, Rubi Gul 1, Jaakko Harkonen.
Plot Approval Yat Long Chan (CUHK) Igor Mandic (Ljubljana) Charlie Young (SLAC)
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
Department of Aeronautics and Astronautics NCKU Nano and MEMS Technology LAB. 1 Chapter IV June 14, 2015June 14, 2015June 14, 2015 P-n Junction.
4/28/01APS1 Test of Forward Pixel Sensors for the CMS experiment Amitava Roy Daniela Bortoletto Gino Bolla Carsten Rott Purdue University.
Ideal Diode Equation. Important Points of This Lecture There are several different techniques that can be used to determine the diode voltage and current.
Wide Bandgap Semiconductor Detectors for Harsh Radiation Environments
EE415 VLSI Design The Devices: Diode [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
ENE 311 Lecture 10.
UICEngineering Measurement of Interface Traps in HgCdTe and InAs/GaSb Superlattice Metal-Insulator- Semiconductor Structure Michael McGovern UIC REU 2006.
X-ray radiation damage of silicon strip detectors AGH University of Science and Technology Faculty of Physics and Applied Computer Science, Kraków, Poland.
EXAMPLE 10.1 OBJECTIVE Solution
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association Institut für Experimentelle Kernphysik
KINETICS OF INTERSTITIAL CARBON ANNEALING AND MONITORING OF OXYGEN DISTRIBUTION IN SILICON PARTICLE DETECTORS L.F. Makarenko*, M. Moll**, F.P. Korshunov***,
June 3rd, 2009Studies of Depletion Voltage Jessica Metcalfe University of New Mexico Capacitance Measurements and Depletion Voltage for Annealed Fz and.
Gunnar Lindstroem – University of HamburgHamburg workshop 24-Aug-061 Radiation Tolerance of Silicon Detectors The Challenge for Applications in Future.
RD50 Katharina Kaska1 Trento Workshop : Materials and basic measurement problems Katharina Kaska.
Study of leakage current and effective dopant concentration in irradiated epi-Si detectors I. Dolenc, V. Cindro, G. Kramberger, I. Mandić, M. Mikuž Jožef.
List of Authors: Maria Rita Coluccia, J. A. Appel, G. Chiodini, D. C. Christian, S. W. Kwan, G. Sellberg with Fermi National Accelerator Laboratory L.
Study of Behaviour of n-in-p Silicon Sensor Structures Before and After Irradiation Y. Unno, S. Mitsui, Y. Ikegami, S. Terada, K. Nakamura (KEK), O. Jinnouchi,
Norhayati Soin 06 KEEE 4426 WEEK 3/2 13/01/2006 KEEE 4426 VLSI WEEK 3 CHAPTER 1 MOS Capacitors (PART 2) CHAPTER 1.
TCAD Simulations of Radiation Damage Effects at High Fluences in Silicon Detectors with Sentaurus TCAD D. Passeri(1,2), F. Moscatelli(2,3), A. Morozzi(1,2),
Detection plan for STEIN, telescope of the space mission CINEMA 1 August 3td 2011-Diana Renaud.
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
J.Harkonen and Z.Li, LHCC open session, CERN, 24th November CERN RD39 Collaboration: Cryogenic Tracking Detectors RD39 Status Report 2004 Jaakko.
SILICON DETECTORS PART I Characteristics on semiconductors.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
D. Menichelli, RD50, Hamburg, august TSC, DLTS and transient analysis in MCz silicon Detectors at different process temperature, irradiation.
Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,
1 Space charge sign inversion and electric field reconstruction in 24 GeV proton irradiated MCZ Si p + -n(TD)-n + detectors processed via thermal donor.
1 Development of radiation hard microstrip detectors for the CBM Experiment Sudeep Chatterji GSI Helmholtz Centre for Heavy Ion Research DPG Bonn 16 March,
EE130/230A Discussion 6 Peng Zheng.
Effects of Surrounding Materials on Proton-Induced Energy Deposition in Large Silicon Diode Arrays Christina L. Howe 1, Robert A. Weller 1, Robert A. Reed.
CERN, November 2005 Claudio Piemonte RD50 workshop Claudio Piemonte a, Maurizio Boscardin a, Alberto Pozza a, Sabina Ronchin a, Nicola Zorzi a, Gian-Franco.
Simulations of 3D detectors
P*-n-n* diode CV characteristics changes at various contact and body doping concentrations. TCAD simulation Ernestas Zasinas, Rokas Bondzinskas, Juozas.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
PIN current degradation Versus 3 MeV proton fluence 3 MeV proton (a)(b) (c)(d) Study of radiation damage in VCSELs and PINs for the optical links of the.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
Production Readiness Review of L0/L1 sensors for DØ Run IIb R. Demina, August, 2003 Irradiation studies of L1 sensors for DØ 2b Regina Demina University.
Celso Figueiredo26/10/2015 Characterization and optimization of silicon sensors for intense radiation fields Traineeship project within the PH-DT-DD section.
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
Doping-type Dependence of Damage in Si Diodes Exposed to X-ray, Proton, and He + Irradiation MURI Meeting - June 2007 M. Caussanel 1, A. Canals 2, S. K.
Spectra distortion by the interstrip gap in spectrometric silicon strip detectors Vladimir Eremin and.
TCAD Simulation – Semiconductor Technology Computer-Aided Design (TCAD) tool ENEXSS 5.5, developed by SELETE in Japan Device simulation part: HyDeLEOS.
6th Trento Workshop on Advanced Silicon Radiation Detectors1/16 J.P. BalbuenaInstituto de Microelectrónica de Barcelona IMB-CNM (CSIC) J.P. Balbuena, G.
1 Concepts of electrons and holes in semiconductors.
Double Electric field Peak Simulation of Irradiated Detectors Using Silvaco Ashutosh Bhardwaj, Kirti Ranjan, Ranjeet Singh*, Ram K. Shivpuri Center for.
Date of download: 6/3/2016 Copyright © 2016 SPIE. All rights reserved. Photon recycling processes in a single junction solar cell on a substrate illustrated.
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
3D SEMICONDUCTOR RADIATION DETECTOR R&D AT HIP EUDET-JRA2 MEETING NIKHEF Juha Kalliopuska.
Development of Novel On-Chip, Customer-Design Spiral Biasing Adaptor for Si Drift Detectors and Detector Arrays for X-ray and Nuclear Physics Experiments.
A simple model for the equivalent circuit of heavily irradiated Si diodes in standard CV measurements D.Campbell, A.Chilingarov, T.Sloan Lancaster University,
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
3D Simulation Studies of Irradiated BNL One-Sided Dual-column 3D Silicon Detector up to 1x1016 neq/cm2 Zheng Li1 and Tanja Palviainen2 1Brookhaven National.
Lecture 14 OUTLINE pn Junction Diodes (cont’d)
Simulation results from double-sided and standard 3D detectors
of APS (Full Depleted FDAPS, MAPS and Hybrid Technology HPD)
TCAD Simulations of Silicon Detectors operating at High Fluences D
Deviations from the Ideal I-V Behavior
Ministry of teaching& high education Al- Mustansiriya University College of engineering Computer &
Presentation transcript:

3D simulations of device performance for 3D-Trench electrode detector Jianwei Chen a,b, Hao Ding a,b, Zheng Li a,b,c, *, Shaoan Yan a,b a Xiangtan University, China b Center for Semiconductor Particle and photon Imaging Detector Development and Fabrication, Xiangtan, China c Brookhaven National Laboratory, Upton, NY, USA (before 2/7/2014)

Outline Structure and simulation of the square 3D-Trench electrode detector Leakage current at different radiation fluences Geometry capacitance Full depletion voltage Summary

Structure and simulation of the square 3D-Trench electrode detector Zheng Li, Nucl. Instr. and Meth A658(2011)

Leakage current at different radiation fluences  The effective doping concentration N eff caused by high energy protons irradiations in Si bulk can be approximated by (for Φ n >1x10 14 n eq /cm 2 ) β=0.01 Φ n is the 1-MeV neutron-equivalent fluence  The leakage current is originated from the generation current of the depletion region if ignore the surface effects.  When the recombination centers are assumed to be in the middle of the bandgap, the leakage current created in the depletion region can be calculated theoretically as [1]B. Dezillie, Z. Li, V. Eremin, W. Chen, L.J. Zhao, IEEE Trans. Nucl. Sci. NS47(6) (2000) [2] D.K. Schroder, Semiconductor Material and Device Characterization, second ed, Wiley, New Yord, 1998, pp

( Generation current ) ( Empirical equation ) ( Electron lifetime ) V dep Volume of the depletion region τ Electron lifetime α Damage constant (4x A/cm) Φ n 1 MeV equivalent neutron fluence (It’s the foundation of the leakage current simulation.) Leakage current at different radiation fluences For fluence of 1x10 14, 1x10 15 and 1x10 16 n eq /cm 2, the theoretical calculation leakage current are 8x10 -9, 8x10 -8 and 8x10 -7 A (volume is 2x10 6 μm 3 ), respectively. H. W. Kraner et al., Nucl. Instr. and Meth A279 (1989)

Leakage current at different radiation fluences Saturation voltage

Leakage current at different radiation fluences For fluence of 1x10 14, 1x10 15 and 1x10 16 n eq /cm 2, the saturation leakage current are 6.37x10 -9, 2.33x10 -8 and 3.13x10 -7 A (volume is 2x10 6 μm 3 ), respectively.

Leakage current increase linearly with radiation fluence Leakage current at different radiation fluences

Geometry capacitance The geometry capacitance of our structure can be calculated by : l=270 μm R/r=10 Theoretical capacitance of our structure is 97.8 fF

Geometry capacitance The vertical lines denote the depletion voltage and the horizontal line is the geometry capacitance, which is 99 fF in our simulations. Theoretical calculation capacitance is 97.8 fF. Small capacitance can ensure small noise, which contribute to good device performance.

Geometry capacitance Change the length (l) of the centre column Geometry capacitance is proportional to the length of centre column. When the length of the centre reduced to zero, capacitance can achieve the theoretical minimum value, 3 Ff. L

Geometry capacitance Change the edge length (s) of the centre column Geometry capacitance increase with the edge length of centre column, but not increase linearly.

Full depletion voltage The full depletion voltage was extracted from the two straight-line fits to the data in the log(C)-log(V) plot. As shown in this figure, the line with arrow is drawn through the intersection of two tangent lines. The x- coordinate of the crossing point gives the depletion voltage value V fd.

Radiation fluence (n eq /cm 2 ) Full depletion voltage (V) 1x x x x x x x x x  The full depletion voltage is only 90 V at 1x10 16 n eq /cm 2.  In this optimal configuration the full depletion voltage can be up to 7 times less than that of a conventional 3D detector with all column electrodes. Full depletion voltage

As bias voltage increases, the depletion region extends from trench electrode (region 3) into the bulk (region 3);. When the detector is depleted (see curves of 90 and 100V), the potential will increase immediately at 7.07μm, but this situation will not happen for the undepleted ones (see curves of 60 and 80 V). Region 1 is p + column, region 2 is p-bulk, and region 3 is n + trench

Full depletion voltage The holes concentration will decline at 7.07 μm for the fully depleted ones. From the potential and the holes concentration figures, we can confirm that the full depletion voltage of the detector is about 90 V, which give same results to those calculated by CV characteristics. 1 23

Summary  Both the leakage current and the voltage to reach the geometry capacitance (full depletion voltage, V fd ) increase with radiation fluence.  The geometry capacitance is 99 fF for the structure in our study.  The leakage current and full depletion voltage at 1x10 16 n eq /cm 2 are 41.3μA (volume is 2x10 6 μm 3 ) and 90 V, respectively.  The full depletion voltage calculated by CV characteristics give similar results to those analyzed by the potential and hole concentration profile simulations.

Thank you