9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory OSC: Chapter 9. Demand Paging Copy-on-Write Page Replacement.

Slides:



Advertisements
Similar presentations
Module 10: Virtual Memory
Advertisements

Chapter 10: Virtual Memory
Chapter 9: Virtual Memory
國立台灣大學 資訊工程學系 Chapter 9: Virtual Memory. 資工系網媒所 NEWS 實驗室 Objectives To describe the benefits of a virtual memory system To explain the concepts of demand.
Virtual Memory Management G. Anuradha Ref:- Galvin.
Silberschatz, Galvin and Gagne  2002 Modified for CSCI 399, Royden, Operating System Concepts Operating Systems Lecture 38 Frame Allocation Read.
03/31/2004CSCI 315 Operating Systems Design1 Allocation of Frames & Thrashing (Virtual Memory)
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 15: Background Information for the VMWare ESX Memory Management.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Module 9: Virtual Memory
Module 10: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging.
Virtual Memory Background Demand Paging Performance of Demand Paging
Virtual Memory Introduction to Operating Systems: Module 9.
Virtual-Memory Management
Gordon College Stephen Brinton
Virtual Memory CS 3100 Virutal Memory.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 10: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 10: Virtual Memory.
Instructor: Umar KalimNUST Institute of Information Technology Operating Systems Revisiting Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
03/29/2004CSCI 315 Operating Systems Design1 Page Replacement Algorithms (Virtual Memory)
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Page 19/17/2015 CSE 30341: Operating Systems Principles Optimal Algorithm  Replace page that will not be used for longest period of time  Used for measuring.
Chapter 9: Virtual Memory. 9.2CSCI 380 – Operating Systems Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual-Memory Management. 9.2Operating System Principles Chapter 9: Virtual-Memory Management Background Demand Paging Copy-on-Write Page.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Background Virtual memory –
Operating System Concepts 7th Edition Abraham SilBerschatz Peter Baer Galvin Greg Gagne Prerequisite: CSE212.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples Operating.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Page Replacement Allocation of.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Outline n Background n Demand.
Chapter 9: Virtual Memory. 9.2 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped.
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 9 th Edition Chapter 9: Virtual-Memory Management.
10.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts with Java Chapter 10: Virtual Memory Background Demand Paging Process Creation Page.
Silberschatz, Galvin and Gagne  Operating System Concepts Virtual Memory Virtual memory – separation of user logical memory from physical memory.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2007 Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Chapter 9: Virtual Memory.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Principles Chapter 9: Virtual-Memory Management 9.1 Background.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples (not covered.
10.1 Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
Silberschatz, Galvin and Gagne ©2011 Operating System Concepts Essentials – 8 th Edition Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging Process.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Background Virtual memory – separation of user logical memory.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
Chapter 9: Virtual Memory
Module 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 9: Virtual-Memory Management
5: Virtual Memory Background Demand Paging
Chapter 6 Virtual Memory
Module 9: Virtual Memory
Presentation transcript:

9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory OSC: Chapter 9. Demand Paging Copy-on-Write Page Replacement Allocation of Frames

9.2 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory can be Larger Than Physical Memory

9.3 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Shared Library Using Virtual Memory

9.4 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Demand Paging Bring a page into memory only when it is needed Less I/O needed Less memory needed Faster response More users Page is needed  reference to it invalid reference  abort not-in-memory  bring to memory Lazy swapper – never swaps a page into memory unless page will be needed Swapper that deals with pages is a pager

9.5 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Transfer of a Paged Memory to Contiguous Disk Space

9.6 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Valid-Invalid Bit With each page table entry a valid–invalid bit is associated (v  in-memory, i  not-in-memory) Initially valid–invalid bit is set to i on all entries Example of a page table snapshot: During address translation, if valid–invalid bit in page table entry is I  page fault v v v v i i i …. Frame #valid-invalid bit page table

9.7 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Fault If there is a reference to a page, first reference to that page will trap to operating system: page fault 1. Operating system looks at another table to decide: Invalid reference  abort Just not in memory 2. Get empty frame 3. Swap page into frame 4. Reset tables 5. Set validation bit = v 6. Restart the instruction that caused the page fault

9.8 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Steps in Handling a Page Fault

9.9 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Fault (Cont.) Restart instruction block move auto increment/decrement location

9.10 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Performance of Demand Paging Page Fault Rate 0  p  1.0 if p = 0 no page faults if p = 1, every reference is a fault Effective Access Time (EAT) EAT = (1 – p) x memory access + p (page fault overhead + swap page out + swap page in + restart overhead )

9.11 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Demand Paging Example Memory access time = 200 nanoseconds Average page-fault service time = 8 milliseconds EAT = (1 – p) x p (8 milliseconds) = (1 – p x p x 8,000,000 = p x 7,999,800 If one access out of 1,000 causes a page fault, then EAT = 8.2 microseconds. This is a slowdown by a factor of 40!!

9.12 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Process Creation Virtual memory allows other benefits during process creation: - Copy-on-Write - Memory-Mapped Files (later)

9.13 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Copy-on-Write Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory If either process modifies a shared page, only then is the page copied COW allows more efficient process creation as only modified pages are copied Free pages are allocated from a pool of zeroed-out pages

9.14 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Before Process 1 Modifies Page C

9.15 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition After Process 1 Modifies Page C

9.16 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition What happens if there is no free frame? Page replacement – find some page in memory, but not really in use, swap it out algorithm performance – want an algorithm which will result in minimum number of page faults Same page may be brought into memory several times

9.17 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Replacement

9.18 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string In all our examples, the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

9.19 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Graph of Page Faults Versus The Number of Frames

9.20 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition First-In-First-Out (FIFO) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 3 frames (3 pages can be in memory at a time per process). Maintain a queue and select based on FIFO order. 4 frames Belady’s Anomaly: more frames  more page faults page faults page faults 4 43

9.21 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition FIFO Page Replacement

9.22 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition FIFO Illustrating Belady’s Anomaly

9.23 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Optimal Algorithm Replace page that will not be used for longest period of time 4 frames example 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 How do you know this? Used for measuring how well your algorithm performs page faults 4 5

9.24 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Optimal Page Replacement

9.25 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 Counter implementation Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter When a page needs to be changed, look at the counters to determine which are to change

9.26 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition LRU Page Replacement

9.27 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition LRU Algorithm (Cont.) Stack implementation – keep a stack of page numbers in a double link form: Page referenced:  move it to the top  requires 6 pointers to be changed No search for replacement

9.28 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Use Of A Stack to Record The Most Recent Page References

9.29 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition LRU Approximation Algorithms Reference bit With each page associate a bit, initially = 0 When page is referenced bit set to 1 Replace the one which is 0 (if one exists)  We do not know the order, however Second chance Need reference bit Clock replacement If page to be replaced (in clock order) has reference bit = 1 then:  set reference bit 0  leave page in memory  replace next page (in clock order), subject to same rules

9.30 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Second-Chance (clock) Page-Replacement Algorithm

9.31 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Allocation of Frames Each process needs minimum number of pages Example: IBM 370 – 6 pages to handle SS MOVE instruction: instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes fixed allocation priority allocation

9.32 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Fixed Allocation Equal allocation – For example, if there are 100 frames and 5 processes, give each process 20 frames. Proportional allocation – Allocate according to the size of process

9.33 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Thrashing If a process does not have “enough” pages, the page-fault rate is very high. This leads to: low CPU utilization operating system thinks that it needs to increase the degree of multiprogramming another process added to the system Thrashing  a process is busy swapping pages in and out

9.34 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Thrashing (Cont.)

9.35 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Demand Paging and Thrashing Why does demand paging work? Locality model Process migrates from one locality to another Localities may overlap Why does thrashing occur? Working set is too big to fit memory.  size of locality > total memory size

9.36 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Locality In A Memory-Reference Pattern

9.37 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Working-Set Model   working-set window  a fixed number of page references Example: 10,000 instruction WSS i (working set of Process P i ) = total number of pages referenced in the most recent  (varies in time) if  too small will not encompass entire locality if  too large will encompass several localities if  =   will encompass entire program D =  WSS i  total demand frames if D > m  Thrashing Policy if D > m, then suspend one of the processes

9.38 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Working Sets and Page Fault Rates

9.39 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Memory-Mapped Files Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page in memory A file is initially read using demand paging. A page-sized portion of the file is read from the file system into a physical page. Subsequent reads/writes to/from the file are treated as ordinary memory accesses. Simplifies file access by treating file I/O through direct memory access rather than read() write() system calls Also allows several processes to map the same file allowing the pages in memory to be shared

9.40 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Memory Mapped Files

9.41 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Memory-Mapped Shared Memory in Windows

9.42 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Other Issues – Page Size Page size selection must take into consideration: fragmentation table size I/O overhead locality

9.43 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Other Issues – TLB Reach TLB Reach - The amount of memory accessible from the TLB TLB Reach = (TLB Size) X (Page Size) Ideally, the working set of each process is stored in the TLB Otherwise there is a high degree of page faults Increase the Page Size This may lead to an increase in fragmentation as not all applications require a large page size Provide Multiple Page Sizes This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation

9.44 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Other Issues – Program Structure Program structure l Int[128,128] data; Each row is stored in one page Program 1 for (j = 0; j <128; j++) for (i = 0; i < 128; i++) data[i,j] = 0; 128 x 128 = 16,384 page faults Program 2 for (i = 0; i < 128; i++) for (j = 0; j < 128; j++) data[i,j] = 0; 128 page faults