The Analysis of Variation In Cost of Care – An Episode of Care Methodology Presentation To the Health Economics Resource Center August 17, 2011 David Redfearn,

Slides:



Advertisements
Similar presentations
Comparator Selection in Observational Comparative Effectiveness Research Prepared for: Agency for Healthcare Research and Quality (AHRQ)
Advertisements

Bill Stockdale, MBA, Celeste Beck, MPH, Lisa Hulbert, PharmD, Wu Xu, PhD Utah Department of Health Comparison with other methods of analysis: 1) Assessing.
Building Episodes of Care Gregory H. Partridge Focused Medical Analytics PAI Seminar – Understanding Episodes of Care Chicago, June 22, 2007.
Increasing Health Care Costs: the Price of Innovation? AcademyHealth Annual Research Meeting June 7, 2004 Claudia A. Steiner, MD, MPH Bernard Friedman,
Inpatient Coding Strategies American College of Physicians March 1, 2013.
Continuity Clinic Coding Patient Encounters EPISODE 1 Concepts.
Why Use Episode-of-Care Methodology? Robert A. Greene, MD, FACP Focused Medical Analytics PAI Seminar – Understanding Episodes of Care Chicago, June 22,
HealthBridge is one of the nation’s largest and most successful health information exchange organizations. An Overview of the HealthBridge Data Analytics.
Types of Health Plans. The practice of medicine is complicated and expensive Medical insurance often covers routine care, such as annual physicals, and.
1 Lauren E. Finn, 2 Seth Sheffler-Collins, MPH, 2 Marcelo Fernandez-Viña, MPH, 2 Claire Newbern, PhD, 1 Dr. Alison Evans, ScD., 1 Drexel University School.
Centre for Health Economics Modelling the impact of being obese on hospital costs Katharina Hauck Bruce Hollingsworth.
THE GROUP INSURANCE COMMISSION’S CLINICAL PERFORMANCE IMPROVEMENT INITIATIVE January 15, 2015.
RACIAL DISPARITIES IN PRESCRIPTION DRUG UTILIZATION AN ANALYSIS OF BETA-BLOCKER AND STATIN USE FOLLOWING HOSPITALIZATION FOR ACUTE MYOCARDIAL INFARCTION.
INTRODUCTION TO ICD-9-CM
Copyright © 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2002 by Saunders, an imprint of Elsevier Inc. Slide 1 Copyright © 2012, 2011, 2010, 2009,
1 Managed Health Care Pricing for Provider Arrangements Presented by Vanessa Olson Seminar on Health and Managed Care October 18, 1999.
Component 1: Introduction to Health Care and Public Health in the U.S. 1.5: Unit 5: Financing Health Care (Part 2) 1.5b: Reimbursement Methodologies and.
Health Care Financing and Managed Care. Objectives  To understand the basics of health care financing in the United States  To understand the basic.
Diagnostic Related Group Inpatient Hospital Reimbursement
1 Chapter 5 Unit 4 Presentation ICD-9-CM Hospital Inpatient, Outpatient, and Physician Office Coding Shatondra Surulere, MBA, RHIA, CCS.
The Business Case for Bidirectional Integrated Care: Mental Health and Substance Use Services in Primary Care Settings and Primary Care Services in Specialty.
TRANSLATING VISITS INTO PATIENTS USING AMBULATORY VISIT DATA (Hypertensive patient case study) by Esther Hing, M.P.H. and Julia Holmes, Ph.D U.S. DEPARTMENT.
Constructing Efficiency Indexes Gregory H. Partridge Focused Medical Analytics PAI Seminar – Understanding Episodes of Care Chicago, June 22, 2007.
An Overview of NCQA’s Relative Resource Use Measures.
RISK ADJUSTMENT CODING
Chapter 15 HOSPITAL INSURANCE.
Slide 1 Long-Term Care (LTC) Collaborative PIP: Medication Review Tuesday, October 29, 2013 Presenter: Christi Melendez, RN, CPHQ Associate Director, PIP.
1 Estimating non-VA Health Care Costs Todd H. Wagner.
July 31, 2009Prepared by the Maine Health Information Center Overview of All Payer Claims Data Suanne Singer, Senior Consultant Maine Health Information.
Analyzing NCHS Drug Data Amy B. Bernstein, Sc.D. Presented at the NCHS Board of Scientific Counselors Meeting January 28, 2005 U.S. DEPARTMENT OF HEALTH.
Exploratory Analysis of Observation Stay Pamela Owens, Ph.D. Ryan Mutter, Ph.D. September, 2009 AHRQ Annual Meeting.
1 Selected Episode Grouping Issues Frederick Thomas, Ph.D. Centers for Medicare & Medicaid Services.
Integrating Clinical Data Warehouses: How Can Multi- System Care for Older Veterans Be Measured Consistently? AcademyHealth Annual Research Meeting Tuesday,
LOCKTON DUNNING BENEFITS UNIVERSITY OF ALASKA 2ND QTR FY13 UTILIZATION REVIEW 7/1/2012 TO 12/31/2012.
June 9, 2008 Making Mortality Measurement More Meaningful Incorporating Advanced Directives and Palliative Care Designations Eugene A. Kroch, Ph.D. Mark.
Medicare Home Health and The Role of Physicians Jennifer L. Wolff, Ann Meadow, Carlos O. Weiss, Cynthia M. Boyd, Bruce Leff June 2008.
Office of Statewide Health Planning and Development Day for Night: Hospital Admissions for Day Surgery Patients in California, 2005 Mary Tran, PhD, MPH.
BlueCross BlueShield of Tennessee, Inc., an Independent Licensee of the BlueCross BlueShield Association. This document has been classified as public Information.
THE URBAN INSTITUTE Examining Long-Term Care Episodes and Care History for Medicare Beneficiaries: A Longitudinal Analysis of Elderly Individuals with.
Seminar 4. Unit 4 Inpatient coding guidelines Principal diagnosis: “that condition established after study to be chiefly responsible for occasioning the.
Copyright © 2016 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
BlueCross BlueShield of Tennessee, Inc., an Independent Licensee of the BlueCross BlueShield Association. This document has been classified as public Information.
Screening Administrative Data To Assess the Accuracy Of Present-on-Admission Coding Michael Pine, M.D., M.B.A. Michael Pine and Associates, Inc. Chicago,
Cost Drivers of Cancer Care: Medicare and Commercially Insured Populations Pamela Pelizzari April 1, 2016.
Independence Plan Update February 26, © 2009 Harvard Pilgrim Health Care2 Key Points  Independence Plan introduced in 2005 –Tiered copayment product.
Chapter 4: The Patient Record: Hospital, Physician Office, and Alternate Care Settings.
Slide 1 Copyright © 2014 by Saunders, an imprint of Elsevier Inc. CHAPTER 9 ICD-9-CM OUTPATIENT CODING AND REPORTING GUIDELINES.
Measuring Cost Efficiency Performance in P4P Programs Bill Thomas University of Southern Maine.
Clinical Terminology and One Touch Coding for EPIC or Other EHR
Alternative Payment Models in the Quality Payment Program
Quality of Electronic Emergency Department Data: How Good Are They?
Physician Performance Measures: Like It Or Not?
Use of BCBSRI Primary Care Provider Profile to Improve Performance
Clinical Data Exchange – Report Card
Types of Health Plans.
Presenter: Christi Melendez, RN, CPHQ
Measuring Efficiency HSCRC Performance Measurement Workgroup
The Nursing Process and Pharmacology Jeanelle F. Jimenez RN, BSN, CCRN
Frequently asked questions
2019 Health Plan ASU is a self-insured health plan. Employees and ASU pay premiums into the plan, and those premiums are used to pay claims, administrative.
Annual Report on the performance of the Massachusetts health care system September 2014 Chart Book.
Risk adjustment using administrative and clinical data: model comparison
Measuring Cost Efficiency Performance in P4P Programs
Comprehensive Medical Assisting, 3rd Ed Unit Three: Managing the Finances in the Practice Chapter 14 - Diagnostic Coding.
Efficiency in P4P: Guiding Principles for Implementing a Successful Physician Efficiency Profiling Program Dr. Jonathan Niloff Tuesday, March 10, 2009.
Maryland Health Services Cost Review Commission
Measuring Efficiency HSCRC Performance Measurement Workgroup
2019 MIPS Cost Performance Category
Medicaid Collaboration
Presentation transcript:

The Analysis of Variation In Cost of Care – An Episode of Care Methodology Presentation To the Health Economics Resource Center August 17, 2011 David Redfearn, Ph.D. Advanced Analytics, Senior Consultant Health Services Actuarial, WellPoint

2 Physician Cost-Efficiency Methodology - Overview Agenda Preface – The Analysis of Variation in Cost Of Care Ingenix/Symmetry Episode Treatment Group Methodology WellPoint Cost-Efficiency Methodology – Goals WellPoint Cost-Efficiency Methodology – Step By Step Reliability and A Statistical Basis for Classifying Cost-Efficiency Questions and Discussion

3 The Analysis Of Cost Variation The method is really an approach to the measurement and categorization of variation in cost of care We can analyze variation by condition (episode of care), by physician, by specialty, by place of treatment (inpatient/outpatient), and by cost component (management, surgery, facility, ancillary, and pharmacy) Originally developed for the analysis of physician “cost-efficiency” But, not really “efficiency” in the Economic sense – we do not have outcome data “Quality” measurement not part of this methodology (handled separately in network development) Methodology yields an “efficiency score”, but it cannot be used effectively without understanding the underlying variation and uncertainty

4 Episode Of Care Models We use the Ingenix/Symmetry Episode Treatment Groups (ETG) methodology ETG model is complicated, but not a “Black Box” Fully documented in Model being developed and enhanced continuously Updated clinical model Risk-Adjusted ETGs Improved reporting files (e.g., provider attribution) Not the only model in use in the Health Care Industry Thompson: Medstat Episode Groups (MEG) Cave Consulting: Cave Episode Groups

5 ETG Methodology ETGs are an illness classification methodology ETGs create episodes by collecting all inpatient, outpatient, pharmacy and ancillary services for a patient into clinically homogeneous, mutually exclusive and exhaustive categories ETGs assign a unique classification (an Episode Treatment Group) and severity level to these episodes reflecting the primary clinical condition for the episode and the complications and comorbidities that impact treatment ETGs identify the start date and end date of episodes Acute episodes may recur over time Chronic episodes are assumed to last forever and are annualized for analysis Individual patients may have multiple active episodes at the same time

6 ETG Methodology

7 Clean Period Methodology – When Does An Episode Start and End? Defined dynamically – from the claim data – based on service dates and member eligibility – not fixed Clean period requirements are specified for each ETG Acute ETGs generally have clean periods of 90 days or less Chronic EGGs generally have clean periods of 365 days (hence, these types of episodes are generally annualized for analysis) To determine the start date, when the grouper finds a defining Dx, it looks backward in time to make sure this Dx has not occurred within the defined clean period Once an episode starts, the claim records are tracked through time until the defining Dx disappears for the defined clean period; the last defining Dx marks the end of the episode

8 Complete and Incomplete Episodes Depends on both claim dates and patient eligibility Complete Episode True start/finish dates known Claim period and patient eligibility encompasses the clean period defined for the ETG Incomplete Episode - Unknown start and/or finish dates Assume claim analysis and member eligibility period is January 1, 2009 through December 31, 2010 Acute Bronchitis has a defined clean period of 30 days First Acute Bronchitis Dx observed on January 15, 2009 – unknown start First Acute Bronchitis Dx observed on December 15, 2010 – unknown finish

9 ETG Number Format ETG Number (XXXX XX X X X) Nine Digit Number

10 ETG Number Example ETG Base Class NumberETG Base Class Description ETG NumberFull Description Diabetes Diabetes w/o complication, w/o comorbidity, w/o surgery Diabetes w/o complication, w/o comorbidity, w/ surgery Diabetes w/o complication, w/ comorbidity, w/o surgery Diabetes w/o complication, w/ comorbidity, w/ surgery Diabetes w/ complication, w/o comorbidity, w/o surgery Diabetes w/ complication, w/o comorbidity, w/ surgery Diabetes w/ complication, w/ comorbidity, w/o surgery Diabetes w/ complication, w/ comorbidity, w/ surgery

11 ETG Severity Many (not all) ETGs are classified into severity levels Severity is specific to the ETG – this is not a patient risk score and cannot be averaged across episodes for a patient Severity level is directly related to episode costs Diabetes has four levels of severity ($ from Ingenix Norms) Diabetes Severity Level 1 - $1,519 Diabetes Severity Level 2 - $2,274 Diabetes Severity Level 3 - $2,923 Diabetes Severity Level 4 - $4,382 Risk adjusted ETGs are used in the cost-efficiency analyses

12 Types Of Episodes Episodic Acute Conditions Chronic Conditions Non-Episodic Screening & Immunizations Ongoing drug therapy without provider intervention Ungroupable Invalid Diagnosis and Procedure Codes “Orphan” records

13 Episode Cost Components ETG Grouper decomposes total episode costs (Professional) Management Costs (Professional) Surgical Costs Facility (Hospital/Facility Costs) Inpatient Ancillary Services (Lab, Radiology, Pathology, etc.) Outpatient Ancillary Services (Lab, Radiology, Pathology, etc.) Pharmacy We use Discounted Covered Charges – Eligible charges after applying provider discounts, but before applying member co- payments and deductibles – also known as “Gross Charges”

14 ETGs As A Foundation Methodology Advantages Clinical validity and homogeneity – particularly when severity levels are used Encompasses all types of utilization (inpatient, outpatient, professional, ancillary, Rx) Related to total treatment costs for a specific condition Disadvantages Complex methodology Dependent on administrative claim data Patient eligibility gaps can affect validity Need high claim volume for increased validity

15 Analysis Goals 1.Encompass all cost of care – Professional, Institutional Inpatient, Institutional Outpatient, and Drugs 2.Exclude non-specific, routine, and preventive care episodes from the analysis 3.Risk adjust ETGs where variation in patient risk influences episode cost (“My Patients are Sicker”) 4.Calculate expected episode costs based on state-wide, specialty-specific averages 5.Assign a “responsible” provider for each episode 6.Calculate the cost-efficiency ratio for each physician based on specialty-specific ETG case mix adjusted cost per episode 7.Account for potential variation in the cost-efficiency ratio via statistical analysis (confidence intervals) that take into account both volume and variability 8.Perform analysis at both the physician (License Number) and Group (TaxID) levels

16 Encompass All Costs of Care All types of administrative claim data is used – professional, institutional inpatient, institutional outpatient, ancillary, and pharmacy Note: Outpatient Rx data may be missing for some members, and episodes for these members are analyzed separately Inpatient hospital costs are included Some have argued that these costs should be excluded because the physician can’t directly control these costs We have analyzed the data both including and excluding these costs, and the differences are minor Physician hospital admission choice is an important part of cost- efficiency

17 Inclusions and Exclusions Incomplete acute episodes are excluded from the analysis All chronic episodes are included – but episode costs are annualized based on the member eligibility when less than 365 days per year We exclude all non-specific ETGs (e.g., Isolated Signs, Symptoms & Non-Specific Diagnoses or conditions) which have highly variable average costs We exclude preventive care ETGs (e.g., Routine Inoculation) because do not want to penalize physicians for purely preventive services We exclude all episodes where we could not identify a responsible physician (missing or invalid license number or when a hospital was the only provider involved in the episode) or for Rx maintenance episodes that do not involve a physician We exclude all episodes flagged as cost outliers (based on Ingenix normative database) We exclude all episodes with zero cost

18 Volume Considerations Having a sufficient volume of data for analysis is important Efficiency comparisons are made episode by episode Some have argued for a minimum of 30 episodes for every norm and every comparison Applying exclusions (for theoretical reasons – previous slide) reduces volume For a recent analysis, these exclusions reduced the episode volume by 47% (from 19 million episodes to 10 million episodes) Anthem Blue Cross has the largest PPO membership volume in California (over 6 million members) – and we still have low episode volume for some comparisons We have over 50,000 contracting network physicians – and 30% of these physicians account for about 80% of claim volume

19 Assign Responsible Physician We assign responsibility for the episode to a single physician Based on highest physician cost for surgical episodes Based on highest physician-patient visit count (direct contact) for medical episodes Must account for at least 30% of the cost or visits in the episode A number of other alternatives are available in the current ETG model Time: first visit in the episode, latest visit in the episode, etc. Specific physician specialty Multiple physicians can be assigned to the episode (one per specialty) Note that about 70% of all episodes involve only a single provider – so this assignment is unambiguous in those cases

20 Peer Cost Comparisons Average episode cost (ETG Base + Severity Level) are calculated for state-wide data – separately by medical specialty Analysis is performed separately for patients with and without Rx benefits Physicians have insisted on “peer” comparisons – to other physicians with the same medical specialty Using same-specialty peer comparisons also (partially) adjusts for patient severity Diabetic patients being treated by Endocrinologists are likely more seriously ill than those treatment by Family Practitioners or General Practitioners Average normative costs for many ETGs vary significantly by specialty – even after adjusting for ETG severity category However – if there is a “best practice” standard of care, and patient severity is accounted for, why would episode costs vary by specialty?

21 Physician Specialty It is important that we correctly classify medical specialty Our provider database can hold up to four specialties for each physician, and often the first-listed specialty does not represent the physician’s actual practice Sub-specialties like Rheumatology or Pulmonology or Cardiology often list Internal Medicine as their primary specialty Misclassifications of provider specialty can bias cost-efficiency comparisons We choose the first listed Board certified specialty if available We are investigating methods that can be used to impute specialty based on practice patterns (from the episode data) Or, we could ask physicians to assign themselves – “What specialty do you want to be compared to?

22 Reliability Issues We calculate an Observed (Physician) to Expected (Specialty Norm) Ratio – used to evaluate cost-efficiency Based on a normative case-mix matching that of the specific physician Ratio greater than 1.0 is “cost-inefficient” Ratio less than 1.0 is “cost-efficient” Point estimate (ratio) may be unreliable Small sample sizes Natural variability in physician performance Unmeasured patient characteristics (incomplete risk adjustment) We use statistical measures to control for this variability (e.g., confidence intervals)

23 Confidence Intervals We calculate 95% confidence intervals around Observed to Expected ratios Confidence intervals take into consideration both volume (episode count) and variability (variation in ETG costs) Better than a static volume criterion (e.g., minimum of 30 episodes) Statistically, we have a 95% confidence that the “true” ratio falls between the lower and upper CI points If the Upper CI is less than 1.0, we say the physician is “cost-efficient” If the Lower CI is greater than 1.0, we say the physician is “cost- inefficient” Otherwise, we say we “Don’t Know” if the physician is efficient or inefficient A substantial proportion of physicians fall into the “Don’t Know” category The Efficiency classification cannot be interpreted and used without understanding of the underlying variation in costs

24 Summary Method is complex Data quality (and completeness) is important! High variability by disease (ETG), Patient and Cost Component Quality measurement (outcome data) is needed for a complete picture – true economic efficiency Interpret with caution!

25 Questions and Discussion Questions Contact Information: (702)