Advanced Operating Systems - Spring 2009 Lecture 17 – March 23, 2009 Dan C. Marinescu Office: HEC 439 B. Office hours:

Slides:



Advertisements
Similar presentations
Background Virtual memory – separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical.
Advertisements

Chapter 9: Virtual Memory
國立台灣大學 資訊工程學系 Chapter 9: Virtual Memory. 資工系網媒所 NEWS 實驗室 Objectives To describe the benefits of a virtual memory system To explain the concepts of demand.
Chapter 9: Virtual Memory Adapted to COP4610 by Robert van Engelen.
Page 15/4/2015 CSE 30341: Operating Systems Principles Allocation of Frames  How should the OS distribute the frames among the various processes?  Each.
03/31/2004CSCI 315 Operating Systems Design1 Allocation of Frames & Thrashing (Virtual Memory)
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory OSC: Chapter 9. Demand Paging Copy-on-Write Page Replacement.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 15: Background Information for the VMWare ESX Memory Management.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Module 9: Virtual Memory
Module 10: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing.
Chapter 9: Virtual-Memory Management. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging.
Virtual Memory Background Demand Paging Performance of Demand Paging
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write.
Virtual-Memory Management
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Lecture 17: Wrapping up Virtual Memory.
Gordon College Stephen Brinton
Virtual Memory CS 3100 Virutal Memory.
Chapter 9: Virtual Memory
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Silberschatz, Galvin and Gagne ©2007 Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
Chapter 10: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 10: Virtual Memory.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Page 19/17/2015 CSE 30341: Operating Systems Principles Optimal Algorithm  Replace page that will not be used for longest period of time  Used for measuring.
Chapter 9: Virtual-Memory Management
Chapter 9: Virtual Memory. 9.2CSCI 380 – Operating Systems Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Chapter 9: Virtual-Memory Management. 9.2Operating System Principles Chapter 9: Virtual-Memory Management Background Demand Paging Copy-on-Write Page.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Background Virtual memory –
Operating System Concepts 7th Edition Abraham SilBerschatz Peter Baer Galvin Greg Gagne Prerequisite: CSE212.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Chapter 9: Virtual Memory Background.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Virtual Memory.
Advanced Operating Systems - Spring 2009 Lecture 16 – March 18, 2009 Dan C. Marinescu Office: HEC 439 B. Office hours:
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement.
Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples Operating.
Silberschatz, Galvin and Gagne  Operating System Concepts Chapter 10: Virtual Memory Background Demand Paging Page Replacement Allocation of.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts – 7 th Edition, Feb 22, 2005 Outline n Background n Demand.
Chapter 9: Virtual Memory. 9.2 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped.
10.1 Silberschatz, Galvin and Gagne ©2003 Operating System Concepts with Java Chapter 10: Virtual Memory Background Demand Paging Process Creation Page.
9.1 Silberschatz, Galvin and Gagne ©2005 Operating System Principles 9.5 Allocation of Frames Each process needs minimum number of pages Example: machine.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2007 Operating System Concepts with Java – 7 th Edition, Nov 15, 2006 Chapter 9: Virtual Memory.
9.1 Silberschatz, Galvin and Gagne ©2009 Operating System Concepts with Java – 8 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2011 Operating System Concepts Essentials – 8 th Edition Chapter 9: Virtual Memory.
Chapter 9: Virtual Memory. 9.2 Silberschatz, Galvin and Gagne ©2005 Operating System Concepts Chapter 9: Virtual Memory Background Demand Paging Process.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Chapter 9: Virtual Memory. Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition Chapter 9: Virtual Memory.
Silberschatz, Galvin and Gagne ©2009 Operating System Concepts – 8 th Edition, Chapter 9: Virtual-Memory Management.
操作系统原理及应用 董恺 计算机科学与工程学院、软件学院 江苏省网络与信息安全重点实验室.
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
Virtual Memory.
Module 9: Virtual Memory
Chapter 9: Virtual Memory
Chapter 9: Virtual Memory
5: Virtual Memory Background Demand Paging
Chapter 9: Virtual Memory
Module 9: Virtual Memory
Chapter 10: Virtual Memory
Presentation transcript:

Advanced Operating Systems - Spring 2009 Lecture 17 – March 23, 2009 Dan C. Marinescu Office: HEC 439 B. Office hours: M, Wd 3 – 4:30 PM. TA: Chen Yu Office: HEC 354. Office hours: M, Wd 1.00 – 3:00 PM. 1

Last, Current, Next Lecture Last time: The structure of address spaces Memory management leftovers Virtual memory Today More about page replacement algorithms I/O Next time: I/O File Systems 2

Counting Algorithms for Page Replacement Keep a counter of the number of references that have been made to each page Least Frequently Used (LFU) Algorithm  replaces page with smallest count. Most Frequently Used (MFU) Algorithm  replaces page with largest count. Based on the argument that the page with the smallest count was probably just brought in and has yet to be used

Allocation of Frames Each process needs minimum number of pages Example: IBM 370 – 6 pages to handle SS MOVE instruction: instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes fixed allocation priority allocation

Fixed Allocation Equal allocation. Example, if there are 100 frames and 5 processes, give each process 20 frames. Proportional allocation  Allocate according to the size of process

Priority Allocation Use a proportional allocation scheme using priorities rather than size. If process P i generates a page fault, select for replacement one of its frames select for replacement a frame from a process with lower priority number

Global vs. Local Allocation Global replacement  process selects a replacement frame from the set of all frames; one process can take a frame from another Local replacement  process selects from only its own set of allocated frames

Thrashing Thrashing  a process is busy swapping pages in and out If a process does not have “enough” pages, the page-fault rate is very high. This leads to: low CPU utilization operating system thinks that it needs to increase the degree of multiprogramming another process added to the system

Demand Paging and Thrashing Why does demand paging work? Locality model Process migrates from one locality to another Localities may overlap Why does thrashing occur?  size of locality > total memory size

Locality In A Memory-Reference Pattern

Working-Set Model   working-set window  a fixed number of page references Example: 10,000 instruction WSS i (working set of Process P i ) = total number of pages referenced in the most recent  (varies in time) if  too small will not encompass entire locality if  too large will encompass several localities if  =   will encompass entire program D =  WSS i  total demand frames if D > m  Thrashing Policy if D > m, then suspend one of the processes

Working-set model

Keeping Track of the Working Set Approximate with interval timer + a reference bit Example:  = 10,000 Timer interrupts after every 5000 time units Keep in memory 2 bits for each page When a timer interrupts copy and sets the values of all reference bits to 0 If one of the bits in memory = 1  page in working set Why is this not completely accurate? Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency Scheme Establish “acceptable” page-fault rate If actual rate too low, process loses frame If actual rate too high, process gains frame

Memory-Mapped Files Allows file I/O to be treated as routine memory access by mapping a disk block to a page in memory. Simplifies file access by treating file I/O through memory rather than read() write() system calls several processes to map the same file allowing the pages in memory to be shared A file is initially read using demand paging. A page-sized portion of the file is read from the file system into a physical page. Subsequent reads/writes to/from the file are treated as ordinary memory accesses.

Memory Mapped Files

Memory-Mapped Shared Memory in Windows

Allocating Kernel Memory Treated differently from user memory Often allocated from a free-memory pool Kernel requests memory for structures of varying sizes Some kernel memory needs to be contiguous

Buddy System Allocates memory from fixed-size segment consisting of physically- contiguous pages Memory allocated using power-of-2 allocator Satisfies requests in units sized as power of 2 Request rounded up to next highest power of 2 When smaller allocation needed than is available, current chunk split into two buddies of next-lower power of 2 Continue until appropriate sized chunk available

Buddy System Allocator

Slab Allocator Slab  one or more physically contiguous pages Cache  of one or more slabs. Single cache for each unique kernel data structure. Each cache filled with objects – instantiations of the data structures. When cache created, filled with objects marked as free When structures stored, objects marked as used If slab is full next object allocated from empty slab if no empty slabs, new slab allocated Benefits no fragmentation, fast memory request satisfaction

Slab Allocation

Pre-paging Pre-paging  bring in main memory all or some of the pages a process will need, before they are referenced Aim  reduce the large number of page faults at process startup If pre-paged pages are unused, I/O and memory was wasted Assume s pages are pre-paged and fraction α of them is used cost of save pages faults s * α > cost of pre-paging s * (1- α) unnecessary pages α near zero  pre-paging loses

Page Size Based upon: fragmentation table size I/O overhead locality

TLB Reach TLB Reach - The amount of memory accessible from the TLB TLB Reach = (TLB Size) X (Page Size) Ideally, the working set of each process is stored in the TLB Otherwise there is a high degree of page faults Increase the Page Size This may lead to an increase in fragmentation as not all applications require a large page size Provide Multiple Page Sizes This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation

The effect of program structure on performance Program structure Int[128,128] data; Each row is stored in one page Program 1 for (j = 0; j <128; j++) for (i = 0; i < 128; i++) data[i,j] = 0; 128 x 128 = 16,384 page faults Program 2 for (i = 0; i < 128; i++) for (j = 0; j < 128; j++) data[i,j] = 0; only 128 page faults

Other Issues – I/O interlock I/O Interlock  Pages must sometimes be locked into memory. Pages that are used for copying a file from a device must be locked from being selected for eviction by a page replacement algorithm

Windows XP Uses demand paging with clustering. Clustering  bring in pages surrounding the faulting page. Working set minimum/maximum  minimum number of pages the process is guaranteed to have in memory; maximum number of pages the process is allowed to have in memory. Working set trimming  removes pages from processes that have pages in excess of their working set minimum When the amount of free memory in the system falls below a threshold, automatic working set trimming is performed to restore the amount of free memory

Solaris Maintains a list of free pages to assign faulting processes Lotsfree – threshold parameter (amount of free memory) to begin paging Desfree – threshold parameter to increasing paging Minfree – threshold parameter to being swapping Paging is performed by pageout process Pageout scans pages using modified clock algorithm Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan Pageout is called more frequently depending upon the amount of free memory available