Channeled Ni-YSZ and Co-YSZ Anodes produced from Directionally Solidified Eutectics: Microstructural Stability M. A. Laguna-Bercero, A. Larrea*, R. I. Merino, J. I. Peña and V. M. Orera Instituto de Ciencia de Materiales de Aragón, C.S.I.C. – U. Zaragoza c/ María de Luna 3, E Spain *Presenting author:
- Introduction - Material preparation Directional solidification of eutectics - Cermet properties Composition & Microstructure Ni-YSZ interfaces - Stability of the cermet microstructure Ageing experiments - Summary Outline SEM & TEM Electrical conductivity Hg porosimetry
Channeled Ni-YSZ cermet Directionally Solidified Eutectics DSE self-organized lamellar microstructure & Strong interphase bonding YSZ electrolyte deposited by MOCVD on a Ni-YSZ channeled cermet Fracture of a Ni-YSZ channeled cermet YSZ Ni pore
DIRECTIONAL SOLIDIFICATION Directional Solidification of Eutectics Conventional NiO-YSZ ceramic Lamellar melt grown composite Minimization of the interfacial energy Diffusion at the solid- liquid interface 20 m
Minimization of the interfacial energy: self-organized lamellar microstructure if vol% minority phase x> 28% NiO-YSZ (x = 0.43) CoO-YSZ (x = 0.39) low energy interfaces (strong bonding) Diffusion at the solid-liquid interface: lamellar thickness controlled by the growth rate R = 117 m 2 mm/h (NiO-CaSZ) 1 2 R = 116 m 2 mm/h (CoO-YSZ) 2 S V = 2/ 2√2 S V = 3 1/4 √x 1 R.I. Merino et al. Recent Res. Devel. Mat. Sci. 4 (2003) J-i Echigoya and S. Hayashi, J. Crystal Growth 129 (1993) L
NiO-YSZ Plate Laser-Assisted directional solidification laser beam heater Ceramic substrate
Rods Samples for microstructural stability experiments produced by Samples for microstructural stability experiments produced by The Laser Floating Zone technique pp cc vcvc vpvp Molten zone Ø = 1.5 mm l = 10 cm after the NiO Ni reduction Microstructural characterization Electronic conductivity Hg porosimetry rod axis
(CTE: = 10.8 x K -1 ) Microstructure: YSZ channels & porous metal channels red. H 2 Co-YSZ: 40.7 YSZ porous Co 75 NiO – 25 8YSZ (mol%) 80 CoO – 20 8YSZ (mol%) Ni-YSZ: 45.6 YSZ porous-Ni 43% vol pore 57% vol metal 41% vol pore 59% vol metal Ni-YSZ, fractureCo-YSZ, polished cross section (CTE: = 10.7 x K -1 ) Co YSZ pore
Matching (002) Ni // (002)YSZ Christensen & Carter, J. Chem. Phys. 114 (2001) Works of separation from ab initio DFT calculations: W Zr/N i = 5014 mJ/m 2 W O/Ni = 5743 mJ/m 2 J. I. Beltrán et al., Phys. Rev B 68 (2003) Å [110] [001] [100] [110] Zr - YSZ = 2.94% [100] [001] [010] Ni sep
(002) Ni // (002)YSZ 4 types of Ni-YSZ interfaces (111) Ni // (002)YSZ [110]YSZ – [110]NiO [100]YSZ – [110]NiO [110]YSZ – [100]NiO [100]YSZ – [100]NiO Polycrystalline Ni film deposited on a (100) cubic-ZrO 2 substrate by MBE
Ni-YSZ 0 h Co-YSZ 300 h Ni-YSZ 300 h Co-YSZ 0 h AGEING?: Microstructure Treatment in 4%H 2 -N 2 at 900 ºC The lamellar microstructure and the low energy interfaces between metal and YSZ ensure a good microstructural stability of the cermets SEM & TEM: No microstructural evolution during the treatment
Measurements: RT - 4 point DC - [1] Simwonis, D., Tietz, F. & Stöver, D., Solid State Ionics, 2000, 132, [2] Skartmousos, D., Tsoga, A., Noumidis, A. & Nikolopoulos, P., Solid State Ionics, 2000, 135, Ni Co CERMET Ni-YSZ [1] [2] RESISTIVITY ( in cm) 112± METAL Bulk Cermet Metal ± hours 300 hours 0 h 300 h h 1041 AGEING?: Electrical conductivity 100 mA Cermet Metal
0 hours 300 hourss 0 hours 300 hours PORE SIZE DISTRIBUTION (open/theoret) AGEING?: Hg porosimetry Co-YSZ Ni-YSZ % open % theoret. % relative % open % theoret. % relative Diameter (µm) Cermet porosity
Channelled Ni-YSZ and Co-YSZ cermets for use in SOFC Alternating channels (400 nm wide) of YSZ and porous metal Strong Ni-YSZ interfacial bonding The lamellar microstructure and the strong bonding between the YSZ and the metal prevent the coarsening of the metal particles in working conditions After 300 h in 4% H 2 -N 2 at 900 ºC No microstructural evolution in SEM & TEM observations. No drop in electronic conductivity. No significant pore evolution. Summary
Acknowledgments: Ministerio de Ciencia y Tecnología (Spain), Project MAT I3P Program, financed by the European Union.