Enhanced LIGO Laser System S. Wagner, B. Schulz, R. Wachter, C. Veltkamp, M. Janssen, P. Weßels, M. Frede, D. Kracht.

Slides:



Advertisements
Similar presentations
Status of High-Power Laser Development at Stanford Shally Saraf*, Supriyo Sinha, Arun Kumar Sridharan and Robert L. Byer E. L. Ginzton Laboratory, Stanford.
Advertisements

Areal RF Station A. Vardanyan RF System The AREAL RF system will consist of 3 RF stations: Each RF station has a 1 klystron, and HV modulator,
Present status of the laser system for KAGRA Univ. of Tokyo Mio Lab. Photon Science Center SUZUKI, Ken-ichiro.
Cascina, January 24, 2005 Status of GEO600 Joshua Smith for the GEO600 team.
Test of LLRF at SPARC Marco Bellaveglia INFN – LNF Reporting for:
CNMFrascati 12/01/061 High Power Laser System for Advanced Virgo C.N.Man Design goals Present technology Other activities in the world Virgo+ and Laser.
Adaptive Optics for Wavefront Correction of High Average Power Lasers Justin Mansell, Supriyo Sinha, Todd Rutherford, Eric Gustafson, Martin Fejer and.
LIGO-G W LIGO II Pre-stabilized Laser System Design Requirements and Conceptual Design David Ottaway, Todd Rutherford, Rick Savage, Peter Veitch,
OPC Overview OPC Device Support (PLC Gateway for 3.14) Ralph Lange – EPICS Collaboration Meeting at SLAC, April 2005.
Linac Laser Notcher Status David Johnson Todd Johnson, Vic Scarpine, Andrea Saewert, John Sobolewski PIP Meeting March 6, 2013 Beams Doc 4306.
Updates on Single Frequency 2 µm Laser Sources
EtherCAT (Beckhoff) for advanced LIGO
EPICS on TPS RF System Yu-Hang Lin Radio Frequency Group NSRRC.
Ion source RF system Andy Butterworth BE/RF Mauro Paoluzzi BE/RF 14/11/2013Linac4 ion source review.
G v1 Squeezer Update Review August 25, 2009 H1 Squeezer Experiment ANU, AEI, MIT, CIT and LHO collaboration.
Diagnostics and Controls K. Gajewski ESS Spoke RF Source Accelerator Internal Review.
Power Stabilization of the 35W Reference System Frank Seifert, Patrick Kwee, Benno Willke, Karsten Danzmann Max-Planck-Institute for Gravitational Physics.
LLRF Phase Reference System The LCLS linac is broken down into 4 separate linac sections. The LCLS injector will reside in an off axis tunnel at the end.
LSU Amplifier Experiments Rupal S. Amin (LSU) J. Giaime (LSU), D. Hosken (Uni. Adelaide), D. Ottaway (MIT) LSC/VIRGO Meeting March 2007 Lasers Working.
A BRIEF INTRODUCTION TO FIELDBUS 4 hf NETLOGIC PLC TRADITIONAL CABLING SYSTEM TERMINAL BOARD.
Status of the advanced LIGO laser O. Puncken, L. Winkelmann, C. Veltkamp, B. Schulz, S. Wagner, P. Weßels, M. Frede, D. Kracht.
LIGO-G v5 1 Pre-stabilized Laser System (PSL) Technical Status NSF Review of Advanced LIGO Project Benno Willke, AEI Hannover and the AdvLIGO PSL.
Lighting Tool Box Machine Vision Lighting
PicoTRAIN IC Only oscillator (no MOPA design)  more simplicity and reliability Dimensions: 480*200*101.6mm3 ongoing volume production High stability.
Ralph Lange: OPC Gateway (Device Support) OPC Gateway (Device Support) Ralph Lange – EPICS Collaboration Meeting March SSRF.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
B. Willke, Mar 01 LIGO-G Z Laser Developement for Advanced LIGO Benno Willke LSC meeting LIGO-Livingston Site, Mar 2001.
Current status of Laser development 2nd Korea - Japan Workshop on KAGRA 2012/5/28(Mon)
The LST High Voltage System LST Readiness Review May 5, 2004 Klaus Honscheid Ohio State University.
LIGO-G W eLigo PSL laser diode room strawman design Rick Savage, Anamaria Effler, Peter King.
Advanced LIGO laser development P. Weßels, L. Winkelmann, O. Puncken, B. Schulz, S. Wagner, M. Hildebrandt, C. Veltkamp, M. Janssen, R. Kluzik, M. Frede,
Squeezed light and GEO600 Simon Chelkowski LSC Meeting, Hannover.
50 W Laser Concepts for Initial LIGO Lutz Winkelmann, Maik Frede, Ralf Wilhelm, Dietmar Kracht Laser Zentrum Hannover LSC March 05 Livingston G Z.
Status of the PSD upgrade - Status of production of new temperature, HV control systems MAPD gain monitoring system. -Status of the PSD temperature stabilization.
©LZH Livingston, La.; LIGO-G Status of 100 W Rod System at LZH Laserzentrum Hannover e. V. Hollerithallee 8 D Hannover Germany.
MICE RF System Power Supplies, Control and Monitoring Status report February 2012 Chris White, STFC Daresbury Laboratory MICE Collaboration Meeting CM32,
Status of the Advanced LIGO PSL development LSC Virgo meeting, Caltech, March 2008 LIGO G Z Benno Willke for the PSL team.
A Thermospheric Lidar for He 1083 nm, Density and Doppler Measurements
LIGO-G09xxxxx-v1 Form F v1 LIGO Laboratory1 Designing a frequency offset locking loop for the 40m prototype Arm Length Stabilization System Sai.
Status of the Advanced LIGO PSL development LSC meeting, Baton Rouge March 2007 G Z Benno Willke for the PSL team.
Laser system for LCGT Norikatsu MIO.
1 Calorimeters LED control LHCb CALO meeting Anatoli Konoplyannikov /ITEP/ Status of the calorimeters LV power supply and ECS control Status of.
AdvLIGO Laser Status Lutz Winkelmann, Maik Frede, Oliver Puncken, Bastian Schulz Ralf Wilhelm, and Dietmar Kracht Laser Zentrum Hannover Frank Seifert,
Status of the PSD upgrade - Status of the PSD cooling and temperature stabilization system - MAPD gain monitoring system - PSD readout upgrade F.Guber,
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
DCS meeting - CERN June 17, 2002V.Kouchpil SDD DCS status Low Voltage system End-ladder ASIC High Voltage system Cooling system Schedule.
RF low level control & synchronization A. Gallo, M. Bellaveglia, L. Cacciotti SPARC review committee – ENEA Frascati – 16/11/2005.
Broadcasting devices. Broadcasting devices overview USB Power Monitor, type channel, 4-line display, USB, Digital out, Opto out WEB Power Monitor,
RFQ Cooling Schemes and Instrumentation PXIE RFQ Fabrication Readiness Review LBNL – June 26, 2013 Andrew Lambert - Engineering Division Lawrence Berkeley.
S. Smith LCLS Facility Advisory October 12, Beam Position Monitors Facility Advisory Committee October 12, 2006.
LIGO-G W Status of the LHO PSLs Rick Savage LIGO Hanford Observatory LIGO Scientific Collaboration Meeting August 13-16, 2001.
Yb:YAG Regenerative Amplifier for A1 Ground Laser Hut Rui Zhang ACCL Division V, RF-Gun Group Nov 20, 2015 SuperKEKB Injector Laser RF Gun Review.
Single-frequency fiber amplifier development for next- generation GWDs
NSG 4070 Signal generator and immunity test system Dr. Heinrich
H1 Squeezing Experiment: the path to an Advanced Squeezer
Status of I&C System Development for ITER Diagnostic Systems in Japan
Progress toward squeeze injection in Enhanced LIGO
ILC LLRF Status Ruben Carcagno, Brian Chase
Update on the Advanced LIGO PSL Program
Nd:YAG Solid Laser 3-2 / A-1 on the ground
WP02 PRR: Master Oscillator and RF Reference Distribution
J. Kovalik, LIGO Livingston Observatory
Electronics requirements for special diagnostics for the XFEL
Jefferson Lab Low Level RF Controls
Lasers for Advanced Interferometers
LLRF and Beam-based Longitudinal Feedback Readiness
Present status of the laser system for KAGRA
ERL BPM System Mike Billing, Mark Palmer
Improving LIGO’s stability and sensitivity: commissioning examples
The RF Control System for the SwissFEL
Presentation transcript:

Enhanced LIGO Laser System S. Wagner, B. Schulz, R. Wachter, C. Veltkamp, M. Janssen, P. Weßels, M. Frede, D. Kracht

Outline Overview eLIGO Laser development eLIGO Laser System –Laser Head –Diode Box –Control Box Characterization –NPRO –Laser Head Summary and Outlook

Overview Power upgrade for observatories from 10 W to 35 W Front end for aLIGO aLIGO front end: eLIGO aLIGO high power laser

eLIGO Laser development Goal: Laser system with output power 35 W good beam quality high long term stability Realization: Master Oscillator Power Amplifier (MOPA) Master Oscillator Power Amplifier

eLIGO Laser development Lab.-prototype Func.-prototypeEng.-prototype Development steps Wrote construction manual to build following systems identically Prototypes

eLIGO Laser development Built Reference System according to manual Rechecked construction manual Build Observatory and Spare Systems according to final construction manual Prototypes

eLIGO Laser System Laser Head Diode BoxControl Box Chiller NPRO driver System components

eLIGO Laser System Laser Room (LVEA) Diode Room 75 m 1) CB interlock 2) DB interlock 3) to NPRO interlock 4) NPRO Diag 1 5) NPRO Diag 2 6) Ethernet 7) EtherCAT 8) EtherCAT 9) Communication Fiberbundle 10) Interlock COM 11) NPRO laser cable 12) Amp Diag 13) MOPA Diag 14) Laser Diode fiber bundle 15) Chiller Diag 16) Cooling water hose System connectivity

eLIGO Laser System NPRO EOM sideband modulation AOM amplitude stabilization Shutter remote controlled Faraday Isolator 4-stage Nd:YVO 4 amplifier remote controllable Laser Head

eLIGO Laser System 4 stage Nd:YVO 4 water cooled fiber coupled pump diodes pump power 4 x 32 W seed power 1.7 W output power 35 W pump light pickups laser pickups temperature monitoring Amplifier

eLIGO Laser System 4 pump diodes water cooled heat sink temperature interlocks diode power supplies peltier driver boards with power supply Beckhoff interface Diode Box

eLIGO Laser System NPRO Diag Control Box

EPICS eLIGO Laser System CE-panel Beckhoff PLC selection of PVs out of process image pool read / write access rights access via MEDMs [1] by Bernhard Kuner (BESSY, Berlin) ( PC Beckhoff OPC server EPICS OPC client Beckhoff programming and diag tools Beckhoff protocol OPC IOC shell [1] –EPICS PV name mapping –set groups, polling speed access to selected PVs Channel Access protocol EPICS interface via OPC-server (O)peness (P)roductivity (C)ollaboration (platform-independent software interface for industrial automation) Communications

Characterization - NPRO NPRO characterization at AEI NPRO overview Laserfuncengrefobs1obs2obs3spare1spare2average Total output power / mW  76 Output power after FI / mW  119 Output power fluctuations, relative rms /  857  186  777  252  394  154  428   247 Relaxation oscillation frequency / kHz  120 PZT frequency actuator callibration / (MHz / V)  0.25 Temperature frequency actuator callibration / (GHz / V)  0.3 Temperature frequency actuator bandwidth / mHz ±41 Pointing fluctuations 1X, relative rms /  6.6  4.0  8.1  4.6  3.6  ±1.6 Pointing fluctuations 1Y, relative rms /  8.7  9.8  2.8  11.5  2.5  2.8  2.1  ±3.7 Pointing fluctuations 2X, relative rms /  4.1  5.4  1.8  5.4  1.8  1.4  1.9  ±1.6 Pointing fluctuations 2Y, relative rms /  6.2  7.4  1.6  7.9  1.8  1.3  1.8  ±2.8 Beam quality (higher order mode content) / % ±1.00 Relative ellipticity / astigmatism ±0.043

Characterization - NPRO Investigations on derated NPRO Actual System settings for output power  35 W : NPRO power 1.8 W 20 % derated (nominal 2.2 W) Amplifier pump power 32 W per stage 30 % derated (nominal 45 W) Derated NPRO

Characterization – Laser Head Beam quality M² < % TEM 0,0

Characterization – Laser Head Long term test

Characterization – Laser Head System overview Laserfuncengrefobs1obs2obs3spare1spare2 NPRO power / W  1.8 NPRO diode 1 temperature / °C NPRO diode 2 temperature / °C average pump power per stage / W MOPA power / W M² < TEM 0,0 mode content / % installation / locationLZHCALTECHAEIMay 2008 / LLO next week / LHO - / LHO 2--

Summary and Outlook Output power of about 37 W M² < 1.1 > 95 % in TEM 0,0 Enhanced LIGO systems ready for installation at Hanford and Livingston Laser installation at Hanford next week Laser installation at Livingston May ´08

Thank you for your attention!

Characterization - NPRO Derated NPRO Investigations on derated NPRO increased amplifier pump current to maintain output power of  35 W no significant decrease of beam quality measurable