Ion Source Development at RAL Dan Faircloth Including the work of: Scott Lawrie, Alan Letchford, Christoph Gabor, Phil Wise, Mark Whitehead, Trevor Wood,

Slides:



Advertisements
Similar presentations
Multi Beamlett Extraction Experiments and Sector Magnet Field Investigation.
Advertisements

Imperial College 1 Progress at the RAL Front End Test Stand J. Pozimski Talk outline : Overview Ion source development LEBT RFQ Beam Chopper MEBT.
H – Ion Source Development at RAL & FNAL PASI Meeting, RAL 3 rd April 2013 Scott Lawrie & Dan Faircloth (RAL) Dan Bollinger (FNAL)
Pepperpot Emittance Measurements of the FETS Ion Source
Diagnostics and commissioning on ERLP Yuri Saveliev ASTeC CONFORM Project: EMMA Design Review Workshop February 2007, Daresbury Laboratory.
Technical studies for the HIE- ISOLDE Frontend upgrade Jacobo Montaño Marie Curie Fellow; CATHI Project * The research project has been supported by a.
E. Beebe LEBT & Ion Injection EBIS Project Technical Review 1/27/2005 LEBT and External Ion Injection Ed Beebe Preinjector Group Collider-Accelerator Department.
HYBRIS: R. Keller Page 1 A Hybrid Ion Source Concept for a Proton Driver Front-End R. Keller, P. Luft, M. Regis, J. Wallig M. Monroy, A. Ratti, and.
E. Beebe Test EBIS Results EBIS Project Technical Review 1/27/2005 An EBIS-based RHIC Preinjector - Test EBIS Results Ed Beebe Preinjector Group Collider-Accelerator.
FETS Ion Source Installation progress UKNF Meeting Trinity College, September Dan Faircloth, Scott Lawrie, Alan Letchford, Christoph Gabor,
Ursel Fantz for the IPP-NNBI Team 16 th ICIS, New York City, USAAugust 23-28, 2015 Towards 20 A Negative Hydrogen Ion Beams for Up to 1 hour: Achievements.
Status Report on Mk.II Pepperpot Simon Jolly Imperial College 13 th June 2007.
Recent FETS Ion Source Measurements UK Neutrino Factory Plenary Meeting 8-9 June 2010 Rutherford Appleton Laboratory Dan Faircloth Faircloth.
Generation and Characterization of Magnetized Bunched Electron Beam from DC Photogun for MEIC Cooler Laboratory Directed Research and Development (LDRD)
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Simultaneous Delivery of Parallel Proton Beams with the EURISOL Driver
FETS H - Ion Source Experiments and Installation Scott Lawrie, Dan Faircloth, Alan Letchford, Christoph Gabor, Phil Wise, Mark Whitehead, Trevor Wood,
The RAL Front End Test Stand Alan Letchford CCLRC RAL ISIS Injector Group Joint Accelerator Workshop 28–29 March 2006.
October 4-5, Electron Lens Overall Design Alexander Pikin October 4, 2010 Electron Lens.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
NuFACT06, Irvine 27. August 2006 The Front End Test Stand (FETS) is a collaborative project, between CCLRC (ISIS & ASTeC) and UK universities (Imperial.
FETS Progress UKNF OsC 21 st June 2010 Dan Faircloth Faircloth.
Status of the Front End Test Stand April Infrastructure R8 refurbished Laser lab under construction Vacuum system for first section delivered Stands.
January 5, 2004S. A. Pande - CAT-KEK School on SNS MeV Injector Linac for Indian Spallation Neutron Source S. A. PANDE.
ICIS2015 in NY Y.HIGURASHI Y. Higurashi (RIKEN Nishina center) 1.Introduction RIKEN RIBF and RIKEN 28GHz SC-ECRIS 2.Emittance measurements 1.4D.
Use of the focusing multi-slit ion optical system at the diagnostic injector RUDI A.Listopad 1, J.Coenen 2, V.Davydenko 1, A.Ivanov 1, V.Mishagin 1, V.Savkin.
Indiana University Cyclotron Facility March, 2004 EIC WorkshopV.P.Derenchuk 1 Polarized Ion Sources V.Derenchuk, Ya.Derbenev, V.Dudnikov Second Electron-Ion.
Simulations and Diagnostics for the Front End Test Stand Simon Jolly Imperial College 18 th April 2007.
Kévin Pepitone 1CLIC project meeting, CERN, December 1st, 2015 Kevin PEPITONE, BE-RF Drive Beam Injector Gun.
BEAM TRANSFER CHANNELS, BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS OF NICA ACCELERATOR COMPLEX Tuzikov A., JINR, Dubna, Russia.
experiences of Ion Source commissioning at CEA Saclay
Christoph Gabor, ASTeC HIPPI—Meeting (WP 5) 26 th – 28 th September 2007 Non—destructive transverse emittance measurement device The Front End Test Stand.
The Heavy Ion Fusion Virtual National Laboratory Neutralized Transport Experiment (NTX) P. K. Roy, S. S. Yu, S. Eylon, E. Henestroza, A. Anders, F. M.
UK Neutrino Factory Meeting Front End Test Stand (F.E.T.S.) Engineering Status by P. Savage 22nd April 2009.
Y. Roblin, D. Douglas, F. Hannon, A. Hofler, G. Krafft, C. Tennant EXPERIMENTAL STUDIES OF OPTICS SCHEMES AT CEBAF FOR SUPPRESSION OF COHERENT SYNCHROTRON.
LDRD: Magnetized Source JLEIC Meeting November 20, 2015 Riad Suleiman and Matt Poelker.
RF source, volume and caesiated extraction simulations (e-dump)
Developments of the FETS Ion Source Scott Lawrie.
A high-peak and high-average current, low emittance, long lifetime electron source* for ERL applications Xiangyun Chang June 9, 2015 Patent applied for.
The Introduction to CSNS Accelerators Oct. 5, 2010 Sheng Wang AP group, Accelerator Centre,IHEP, CAS.
RFQ – Design, Components and Fabrication 1 We aim to design and manufacture a Radio Frequency Quadrupole (RFQ).
September 13, 2007 J. Alessi EBIS Project and EBIS as an ionizer for polarized He-3 ? Jim Alessi Work of E. Beebe, A. Pikin, A. Zelenski, A. Kponou, …
LEPTA: Low Energy Particle Toroidal Accumulator Presented by: Mkhatshwa S. L. Nkabi N. Loqo T. Mbebe N. Supervisor: A. Sidorin SA STUDENT PRACTICE 2010.
The RAL Front End Test Stand David Findlay for Alan Letchford Accelerator Division, ISIS Department Rutherford Appleton Laboratory HIPPI-05, Cosener’s.
SLHC-PP WP7 8 April 2008 Structure SLHC- PP WP7 SLHC-PP Steering Group SPL Study Group DESY Peters INFN ? CERN Scrivens / Hofle STFC- RAL Faircloth CEA.
FETS-HINS Videoconference 23rd Feb 2007 FETS Mechanical Design Issues by J. Pozimski On behalf of P. Savage.
Development of High Current Bunched Magnetized Electron DC Photogun MEIC Collaboration Meeting Fall 2015 October 5 – 7, 2015 Riad Suleiman and Matt Poelker.
H4F Physics Day 2014 C.Ullmann Proton injector status for FAIR and measurements at BETSI test bench (CEA/Saclay) 2014.
Studies on 2.45 GHz microwave ion sources Abhishek Nag IISER, KOLKATA Presented By: G.O. Rodrigues IUAC, New Delhi Supervised By:
CHARACTERIZATION OF MICROWAVE DISCHARGE ION SOURCE FOR HIGH PROTON BEAM PRODUCTION IN CW AND PULSED MODE Rosalba Miracoli Consegna del premio “Francesco.
PS-ESS and LEBT State of the art Lorenzo Neri Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud.
Kévin Pepitone 1CLIC workshop, CERN, January 2016 Kevin PEPITONE, BE-RF LEETCHI: Drive Beam Electron Source.
PXIE LEBT Status Update Lionel Prost PIP-II “Friday” Meeting January 16 th, 2015.
H- ion source development at FNAL Dan Bollinger.
H - ion source at the pre-acc R&D lab Update HINS Meson meeting January 20 th, 2011 L. Prost, C. Schmidt, D. Bollinger, R. Tomlin.
Warm Front End Concept A. Shemyakin PIP-II Machine Advisory Committee 9-11 March 2015.
H - Ion Source Development at FNAL Alejandro Garcia Sosa Proton Accelerators for Science and Innovation Workshop Nov
Understanding Extraction And Beam Transport In The ISIS H - Ion Source D. C. Faircloth, A.P Letchford, C. Gabor, S. Lawrie M. O. Whitehead and T. Wood.
The RAL Front End Test Stand
BEAM TRANSFER CHANNELS, INJECTION AND EXTRACTION SYSTEMS
The RAL Front End Test Stand
Laser-based Beam Diagnostics for the RAL Front End Test Stand
A. Martynov on behalf of accelerator division.
Injector Cyclotron for a Medical FFAG
Status of the Front End Test Stand April 2007.
H- Ion Source Development
Physics Design on Injector I
(Beam) Commissioning Plan
Plans for future electron cooling needs PS BD/AC
Presentation transcript:

Ion Source Development at RAL Dan Faircloth Including the work of: Scott Lawrie, Alan Letchford, Christoph Gabor, Phil Wise, Mark Whitehead, Trevor Wood, Mike Perkins, Mick Bates, David Findlay, Juergen Pozimski, Simon Jolly, Pete Savage, David Lee Dan Faircloth – Proton Meeting RAL Thursday 24 th MarchFaircloth

The ISIS Ion Source Penning H - ion source Surface plasma source (SPS) Dudnikov type 15 ml/min H 2 3 g/month Cs 20 day average lifetime

Mounting Flange Negative Ion Beam Mica Penning Pole Pieces 10mm Slit Aperture Plate Water Cooling Channels Source Body Air Cooling Channels Ceramic Spacer Copper Spacer Cathode Hollow Anode Discharge Region Extraction Electrode

H2H2 Negative Ion Beam Piezo Hydrogen Valve Caesium Oven Caesium Vapour Heated Transport Line Hollow Anode 50 A Discharge +17 kV Extraction Voltage 10 mm

H2H2 Negative Ion Beam Piezo Hydrogen Valve Caesium Oven Caesium Vapour Heated Transport Line Hollow Anode 50 A Discharge +17 kV Extraction Voltage Source Runs at 50 Hz Rep Rate 10 mm

Timing Time H 2 Gas Pulse ~ 200 μs Extraction Voltage Pulse ~ 250 μs Source Runs at 50 Hz Rep Rate Discharge Pulse ~ 600 μs H - Beam

Cathode Hydrogen Feed Heated Caesium Transport Line Air Cooling Source Body Hollow Anode Discharge Power Feed Thermocouples

Aperture Plate

Extraction Electrode Support Insulators Caesium Shields Extraction Mount

3 Sources at ISIS Operational Source 24 x 7 operation 20 day average lifetime μs pulse length 50 Hz 35 keV 35 RFQ Ion Source Development Rig Pre-test operational sources Problem solving FETS Source Experimental sources High current Long pulse 65 keV

FETS 65 kV high voltage platform

Laser Diagnostics Vessel 3 Solenoid LEBT Ion Source

+ Platform ground - 18 kV Pulsed extraction power supply Extraction electrode Aperture plate Extraction gap 90  Sector magnet Toriod 1 H - beam FETS Source Schematic Extraction electrode, coldbox and sector magnet all pulsed Coldbox 65 kV Platform DC power supply Post extraction acceleration gap Laboratory ground MΩ750 kΩ Protection electrode Ground plane Suppression electrode P.S.

FETS Source Dan Faircloth – ICIS 2009Faircloth

FETS source modifications Steady state calculation Computational fluid dynamic cooling calculation Cathode Surface Anode Surface ΔT= 73 ºC ΔT= 39 ºC Transient Calculation Finite Element Modelling 2.2 ms discharge at 50 Hz achieved with simple design changes 1. Extend discharge duty cycle

2. Discharge current FETS source modifications Experiments For each extraction condition there is a range of discharge currents that give minimum beam divergence 14 kV extraction voltage 2.2 mm extraction gap

1. Extend discharge duty cycle 3. Permanent magnet Penning field 2. Discharge current FETS source modifications Nd 2 Fe 14 B Permanent Magnets B To allow different extraction voltages the Penning field must be decoupled from the sector magnet field Permanent magnets are used to produce the produce the 0.15 – 0.25 T required for a stable discharge

1. Extend discharge duty cycle 3. Permanent magnet Penning field 2. Discharge current 4. Extraction FETS source modifications Voltage, Geometry and Meniscus Increase voltage from 17 to 25 kV Child-Langmuir 78 mA Widen plasma electrode aperture Meniscus Studies Decrease extraction jaw separation

1. Extend discharge duty cycle 3. Permanent magnet Penning field 2. Discharge current 4. Extraction 5. Analysing magnet FETS source modifications Magnet Redesign Dipole has a focusing component Magnetic Field Gradient Index, n Field gradient index 0 0.5T Field must be adequately terminated Significant improvement in emittance Size of good field region increased Beam expands under space charge Exact degree of compensation unknown Optimum field gradient index n = 1.2 determined by experiment

1. Extend discharge duty cycle 3. Permanent magnet Penning field 2. Discharge current 4. Extraction 5. Analysing magnet 6. Post acceleration FETS source modifications Optimize Post Acceleration Gap Minimum emittance growth occurs for a post acceleration field of 9 kVmm kV PA Voltage Measured 355 mm from Ground Plane of PA Gap 11 kV PA Voltage25 kV PA Voltage Constant 10 kV Extraction Voltage 23 mA H - Beam Current 19 kV PA Voltage 55.0 mm PA Gap 9.2 mm PA Gap 2.5 mm PA Gap 2.0 mm PA Gap 12.5 kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm kVmm - 1 Increasing Post Acceleration Gap Length Increasing Post Acceleration Voltage

Isolating Column 1×10 -4 mBar 6×10 -5 mBar Beam shutter Slit-slit scanners 5×10 -6 mBar Retractable Faraday Cup 2000 Ls -1 Turbo Pump Pepper pot or profile scintillator head Camera 7×10 -6 mBar Solenoid 3 Toroid3 Solenoid 2 Solenoid 1 Toroid 1 Toroid 2 4 × 800 Ls -1 & 1 x 400 Ls -1 Turbo Pumps Differential pumping and laser profile vessel 400 Ls -1 turbo pump Diagnostics vessel Toroid 4 Laser Diagnostics

Short Pulse Operation <1ms For pulse lengths shorter than 1 ms: 80 mA at the ground plane 60 mA at the entrance of the RFQ 0.3 πmm.mrads r.m.s normalised Results that follow are for 2 ms pulse lengths…

Vary Discharge Current- 20 to 50 A Discharge CurrentDischarge Voltage Discharge PowerDischarge Impedance H - Beam Current

1. Increased Plasma Density Increased H + and Cs + bombardment sputters Cs from cathode surface. More H - are stripped on their way to the extraction region. Possible Explanation of Droop:

2. Electrode Surface Temperature Rise Transient 3D FEA calculations of electrode surface temperature Higher discharge currents ↓ Greater surface temperature rise during the pulse ↓ Surface Cs coverage pushed away from optimum Discharge Power

Vary Discharge Rep Rate

Lower repetition rate ↓ More time between pulses ↓ Longer time for Cs coverage to build up

Time Variation of Emittance: 25 Hz 50 A discharge

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

500 Current (μA) Current (μA) µs Horizontal Vertical Beam Current Normalised RMS Emittance ( π mm mrad)

Time variation of Emittance Parameters for different conditions: Phase space rotation caused by decompensation of the beam HORIZONTAL VERTICAL Normalised RMS Emittance Twiss Alpha Twiss Beta

IB8π2εHεVIB8π2εHεV Beam Brightness =

ISIS Source around the World Chinese Spallation Neutron Source ESS Bilbao

CERN SLHC-pp Source THE CHALLENGE: Over 3 times increase in power Over 100 times increase in d.f.

Modelling and Prototyping

1.2 ms pulse length at 50 Hz 50 kW plasma stable

The Future Up-rated power supplies Better understanding of the plasma - PhD research project with JAI - Optical spectroscopy - Plasma modelling Scaled source Understand lifetime limitations

Thank you for your attention Questions, Comments?