סדנה מתקדמת בהוראת המתמטיקה מרצה : דר ' בוריס קויצ ' ו מתרגל : מר איגור קונטורוביץ ' חברי הקבוצה : יוליה אלקין עביר סלאמה אמאני חיר רועי לחמי.

Slides:



Advertisements
Similar presentations
Modelling with expert systems. Expert systems Modelling with expert systems Coaching modelling with expert systems Advantages and limitations of modelling.
Advertisements

Meaningful learning.
Instructional Technology vs. Educational Technology
Educational Technology
Department of Mathematics and Science
Comprehensive Balanced Mathematics Model Elementary Okaloosa County School District Dr. Lynda Penry.
To prepare gifted students for an ever-changing global marketplace where they must be self-reflective, goal-oriented problem-seekers and solvers.
Columbus East High School August 2008 – May 2012 E-PORTFOLIO.
Action Research Project By Sohayla M. Lajevardi 2013.
Mathematics in the MYP.
Promoting Higher-Order Thinking
Team Task Choose 1 Progression to READ: Number and Operations--Fractions Ratios and Proportional Relationships Develop “Content” Knowledge.
English, L. & Sriraman, B. (2010). Problem solving for the 21 th century. In B. Sriraman & L. English (Eds.), Theories of Mathematics Education: Seeking.
What Mathematics Knowledge is Needed for Teaching Mathematics?
Mathematics Reform The Implications of Problem Solving in Middle School Mathematics.
Introduction 1.How do you use technology now? 2.What helps? 3.What hinders? Definition of Technology Computers Software Internet Digital cameras and camcorders.
1 ETR 520 Introduction to Educational Research Dr. M C. Smith.
Models and Modeling in the High School Physics Classroom
The Role of Educational Psychology
Planning for Success What matters in building a successful secondary program in Chinese?
Thinking, reasoning and working mathematically
Science PCK Workshop March 24, 2013 Dr. Martina Nieswandt UMass Amherst
Science Inquiry Minds-on Hands-on.
1 New York State Mathematics Core Curriculum 2005.
GOALS & GOAL ORIENTATION. Needs Drive Human Behavior  Murray  Maslow.
The Standards for Mathematical Practice
The Use of Student Work as a Context for Promoting Student Understanding and Reasoning Yvonne Grant Portland MI Public Schools Michigan State University.
© 2013 Boise State University1 What the Shifts in the Standards Mean for Learning and Instruction Michele Carney, PhD Spring 2014.
Achieving Authentic Inquiry in Your Classroom Presented by Eric Garber.
Engaging Learners and Realizing the Development of Mathematical Practices ALM Conference July 15, 2015 Trena L. Wilkerson Professor, Mathematics Education.
Engaging Students in High Level Cognitive Tasks Marjorie Graeff April 21, 2010 Division of Teaching & Learning.
May 19-22,  Become familiar with the Fostering Algebraic Thinking materials.  Examine activities that may be challenging to facilitate. 
Research and Instructional Practices National Math Panel Meeting Stanford, CA November 6, 2006 James Hiebert, University of Delaware.
SLB /04/07 Thinking and Communicating “The Spiritual Life is Thinking!” (R.B. Thieme, Jr.)
Webb’s Depth of Knowledge
Quick Glance At ACTASPIRE Math
1 Science as a Process Chapter 1 Section 2. 2 Objectives  Explain how science is different from other forms of human endeavor.  Identify the steps that.
Advantages of Using Children’s Literature provides a motivating introduction to complex curriculum topics mathematical vocabulary can be reinforced and.
CT 854: Assessment and Evaluation in Science & Mathematics
The Evolution of ICT-Based Learning Environments: Which Perspectives for School of the Future? Reporter: Lee Chun-Yi Advisor: Chen Ming-Puu Bottino, R.
Science and Engineering Practices: Models and Argumentation “Leading for educational excellence and equity. Every day for every one.”
MATHEMATICAL MODELING AND THE COMMON CORE STANDARDS.
CONCEPTUALIZING AND ACTUALIZING THE NEW CURRICULUM Peter Liljedahl.
Teaching Mathematics: Using research-informed strategies by Peter Sullivan (ACER)
Development of the Algebra II Units. The Teaching Principle Effective teaching requires understanding what ALL students know and need to learn and challenging.
A Model Based Reasoning by Introductory Students When Analyzing Earth Systems and Societal Challenges Lauren Holder Bruce Herbert.
Paper III Qualitative research methodology.  Qualitative research is designed to reveal a specific target audience’s range of behavior and the perceptions.
Anne Watson Hong Kong  grasp formal structure  think logically in spatial, numerical and symbolic relationships  generalise rapidly and broadly.
MATHEMATICS 1 Foundations and Pre-Calculus Reasoning and analyzing Inductively and deductively reason and use logic to explore, make connections,
What is Research?. Intro.  Research- “Any honest attempt to study a problem systematically or to add to man’s knowledge of a problem may be regarded.
Bloom’s Taxonomy The Concept of “Levels of Thinking”
#1 Make sense of problems and persevere in solving them How would you describe the problem in your own words? How would you describe what you are trying.
1 Teaching for Mastery: Variation Theory Anne Watson and John Mason NCETM Standard Holders’ Conference March The Open University Maths Dept University.
Middle Mathematics Teacher Endorsement Programme Planning and Teaching Mathematics Through Problem Solving Session 3 Facilitator: Rebeka Matthews Sousa.
2 Objectives To develop understanding of Functional Skills To explore resources and strategies for building towards functionality in the context of probability.
MATH BY MEAGHAN, ROWEN, ELSIE. CONTENT LIST ▪ INTRODUCTION : Past vs Present ▪ SELECTING APPROPRIATE MATH : Math Standards ▪ RESEARCH ON MATH INSTRUCTION.
Purpose of Proof Writing
An Introduction to the Colorado Assessment Standards
OSEP Leadership Conference July 28, 2015 Margaret Heritage, WestEd
Elementary and Middle School Mathematics Chapter Reflections: 1,2,3,5,6 By: Amy Howland.
What to Look for Mathematics Grade 1
Principles to Actions: Establishing Goals and Tasks
Productive Mathematical Discussions: Working at the Confluence of Effective Mathematics Teaching Practices Core Mathematics Partnership Building Mathematical.
Mapping it Out! Practical Tools to Use Assessment Well
Common Core State Standards Standards for Mathematical Practice
The curriculum The curricullum tells «What and how the learners should learn» at specific levels of the education system. It includes the objectives and.
ASSESSMENT IN EDUCATION.
Presentation transcript:

סדנה מתקדמת בהוראת המתמטיקה מרצה : דר ' בוריס קויצ ' ו מתרגל : מר איגור קונטורוביץ ' חברי הקבוצה : יוליה אלקין עביר סלאמה אמאני חיר רועי לחמי

פיתרון בעיות - הקדמה פיתרון בעיות מפוליה עד היום – ענף גדול במחקר חינוך מתמטי פיתרון בעיות וחיבור בעיות למידה מתרחשת דרך פיתרון בעיות ולכן בעיות טובות עשויות לשפר תהליך מורה – דמות שעשויה לחנך את התלמידים לפתור בעיות

פיתרון בעיות - היסטוריה התפתחות התחום : –הויריסטיקות ואיסטרוטגיות –מאפיינים של פותר בעיות מוצלח מול גורמים אשר מביאים להצלחה בפיתרון בעיות ( רגשות, אמונות וכו ') השוואה בין המומחה לבין הטירון –מודלים המסבירים תהליך פיתרון בעיות –עקרונות פדגוגיים ועקרונות הקשורים לתלמידים ( כמו עיקרון חסכנות )

English, L. & Sriraman, B. (2010). Problem solving for the 21 th century. In B. Sriraman & L. English (Eds.), Theories of Mathematics Education: Seeking new frontier. Berlin: Springer, Mousoulides, M. Sriraman, B., Pittalis, M., & Christou, C. (2007). Tracing students' modeling processes in elementary and secondary school. Paper presented at 5th Congress of the European Society for Research in Mathematics Education (CERME – 5), Cyprus.

בעייה מתמטיקה

בעייה מתמטיקה The best way to teach mathematical ideas is to start with interesting problems whose solution requires the use of ideas. Use problem solving as a powerful means to develop substantive mathematical concept. Real word problem Integration within all topic areas Outside the class a. complex systems. b. plan, monitor and assess progress c. adapt quickly to technologies.

בעייה מתמטיקה * גורן, ב. אלגברה חלק ב ', הוצאת עצמית, עמ ' 155

Modeling Mathematical models = "systems of elements, operations, relationships and rules that can be used to describe, explain, or predict the behavior of some other familiar system” Modeling problems are realistically complex situations where the problem solver engages in mathematical thinking beyond the usual school experience and where the products to be generated often include complex artefacts or conceptual tools that are needed for some purpose, or to accomplish some goal.

Modeling Mathematical models = "systems of elements, operations, relationships and rules that can be used to describe, explain, or predict the behavior of some other familiar system” Elicit my own mathematics meaningful Make sense identifying selecting Interpreting making representation Cyclic process sorting organizing selecting quantifying Transforming large data

University’s Cafeteria Construct models for selecting the best among a number of employees

Elicit my own mathematics identifying selecting Interpreting making representation Cyclic process sorting organizing selecting quantifying Transforming large data Real world Outside the class מתמטיקה  בעייה סטטיסטיקה Reformulating the problem Not just one right answer Complex system Hours, money, seasons

Nunokawa, K. (2005). Mathematical problem solving and learning mathematics: what we expect students to obtain. The Journal of Mathematical Behavior, 24 (3- 4), What aspects of the targeted mathematical theory can students come to appreciate through their individual or collective problem solving processes? 2. What aspects of the theory are difficult to be noticed by students only through their natural problem solving processes?

Leikin, R. (2004). Towards high quality geometrical tasks: reformulation of a proof problem. In M. J. Hoines & A. B. Fuglestad (Eds.) Proceedings of the 28 th International Conference for the Psychology of Mathematics Education, Vol. 3,

בעייה The person has to be motivated to find a solution No readily available procedures The person has to make an attempt and persists to reach a solution Several solving approaches 4 קריטריונים לקביעת איכות הבעייה :

בעיית חקר The person has to be motivated to find a solution No readily available procedures The person has to make an attempt and persists to reach a solution Several solving approaches 4 קריטריונים לקביעת איכות הבעייה : challenging Cognitively demanding High motivated

עד כמה לפתוח את הבעייה ? 1. הוכח שגובה הטרפז שווה לקטע האמצעים 2. השווה בין הגובה לקטע האמצעים. 6. מה תוכל לומר על טרפז זה ? מסעיף 2 שימוש בתוכנת גיאומטריה דינמית. 3. מצא יחסים אפשריים בין הקטעים היוצאים מאמצעי הצלעות הנגדיות. 4. אותה שאלה ללא הנחייה לבניית עזר. ( לא רבלנטי לבעייה לעיל ). 5. מצא גדלים שווים בטרפז זה.

מה ההבדל ?