1 of 21 Contributions of GPS Data to Severe Weather Forecasting in California Seth I. Gutman NOAA Earth System Research Laboratory Boulder, CO USA 80305.

Slides:



Advertisements
Similar presentations
The syllabus says: Atmosphere and change  Describe the functioning of the atmospheric system in terms of the energy balance between solar and long- wave.
Advertisements

Weather Review. The water cycle needs energy in order to work. This energy comes from: the earth. the sun the clouds. water.
Chapter 1 Introduction Elements of Weather & Climate Composition of the Atmosphere Thermal Structure of the Atmosphere.
Humidity The relative measure of the amount of water vapor in the air
Earth’s Global Energy Balance Overview
Atmosphere & Climate Change
Chapter 1: The Earth’s Atmosphere Overview of the Earth’s atmosphere Overview of the Earth’s atmosphere Vertical structure of the atmosphere Vertical structure.
Focus on the Terrestrial Cryosphere Cold land areas where water is either seasonally or permanently frozen. Terrestrial Cryosphere 0.25 m Frost Penetration.
CLIMATE and WEATHER.
Earth’s Weather and Climate
Weather Systems In this presentation you will:
Ocean Response to Global Warming William Curry Woods Hole Oceanographic Institution Wallace Stegner Center March 3, 2006.
Climate, Change and Flood Planning CCTAG April 2013.
Science ~ chapter 9 climate
UNDERSTANDING TYPHOONS
Lesson 11: El Niño Southern Oscillation (ENSO) Physical Oceanography
Global Patterns & Relative Humidity
California Climate, Extreme Events and Climate Change Implications Peter Coombe Staff Environmental Scientist CA Department of Water Resources
Making Connections Chapter 12
ATMOSPHERE Air Circulation
Atmospher e & Weather Atmospher e & Weather 2 Clouds & Precipitati on Severe Storms Severe Storms 2 Climate $1 $2 $5 $10 $20.
20 pt 30 pt 40 pt 50 pt 10 pt 20 pt 30 pt 40 pt 50 pt 10 pt 20 pt 30 pt 40 pt 50 pt 10 pt 20 pt 30 pt 40 pt 50 pt 10 pt 20 pt 30 pt 40 pt 50 pt 10 pt CloudsWeatherTools.
Lecture 6: The Hydrologic Cycle EarthsClimate_Web_Chapter.pdfEarthsClimate_Web_Chapter.pdf, p. 10, 16-17, 21, 31-32, 34.
Lecture Oct 18. Today’s lecture Quiz returned on Monday –See Lis if you didn’t get yours –Quiz average 7.5 STD 2 Review from Monday –Calculate speed of.
This postcard shows a warm coastal climate.
How does atmospheric pressure distribute energy?
EARTH’S CLIMATE. Latitude – distance north or south of equator Elevation – height above sea level Topography – features on land Water Bodies – lakes and.
The Hydrometeorology Testbed Network. 2 An AR-focused long-term observing network is being installed in CA as part of a MOA between CA-DWR, NOAA and Scripps.
Section 13.4 Recurrent Weather Objectives
CDC Cover. NOAA Lab roles in CCSP Strategic Plan for the U.S. Climate Change Science Program: Research Elements Element 3. Atmospheric Composition Aeronomy.
Objectives Explain the difference between weather and climate.
Chapter 11 Hurricanes. Hurricane Katrina Flooded 80% of New Orleans The US’s deadliest hurricane in terms of deaths happened in 1900 in Galveston, Tx.
Severe Weather. Thunderstorms Small intense systems that can produce strong winds, rain, lightning and thunder. Need 2 conditions –Air near surface needs.
Pressure, Fronts, air masses
Outline Further Reading: Chapter 08 of the text book - air masses - air masses of the world and of N. America - fronts: warm, cold and occluded Natural.
Climate and Climate Change Environmental Science Spring 2011.
Severe Weather.
Chapter 1: The Earth’s Atmosphere
World Geography Ch. 3 Weather & Climate. Earth’s Atmosphere & Climates The Sun plays the major role in Earth’s weather and climate. The Sun plays the.
Global Climates and Biomes
$2 $5 $10 $20 $1 $2 $5 $10 $20 $1 $2 $5 $10 $20 $1 $2 $5 $10 $20 $1 $2 $5 $10 $20 $1 Water Cycle Weather Instruments Changes in Weather Potpourri In the.
Science Weather Review
Do Now: Analyze the following images
Bellringer. Climate Climate is the average weather conditions in an area over a long period of time. – determined by a variety of factors including: latitude,
Day one Chapter 13 Atmosphere and Climate Change
Introduction to Meteorology UNIT 10 STANDARDS: NCES 2.5.1, 2.5.2, 2.5.3, 2.5.4, 2.5.5, LESSON 1.
Volusia District Science Office week 8. SC.6.E.7.3 – Air Temperature El Niño is a weather pattern in which the normally cool ocean currents of the tropical.
Hurricane Formation El Nino. Warm-up: water cycle review. Label the arrows with these terms: What are the 2 possibilities for precipitation that hits.
What’s the difference? Climate? Weather? Hot Cold Wet Dry Wind
Chapter 5 Lesson 3 Global Patterns Pgs. 164 – 169 Benchmark: SC.6.E.7.3.
World Geography Ch. 3 Weather & Climate.
USWRP Multi-Agency Cool- Season QPF Workshop Co-Chairs Marty Ralph (NOAA/ETL) Bob Rauber (Univ. Illinois)
Climate -Climate is the average weather conditions in an area over a long period of time. -Climate is determined by a variety of factors that include latitude,
Potential Use of the NOAA G-IV for East Pacific Atmospheric Rivers Marty Ralph Dave Reynolds, Chris Fairall, Allen White, Mike Dettinger, Ryan Spackman.
Section 1.2 The Causes of Weather
Weather. Atmosphere and Air Temperature insolation – the amount of the Sun’s energy that reaches Earth at a given time and place insolation – the amount.
Weather Patterns Environmental Science 2.2. Weather Predictions Meteorology – study of the physics and chemistry of the atmosphere Weather – atmospheric.
Global Warming The heat is on!. What do you know about global warming? Did you know: Did you know: –the earth on average has warmed up? –some places have.
WEATHER IS THE TERM WE USE TO DESCRIBE THE CONDITIONS OF THE ATMOSPHERE AROUND US. What is Weather?
Chapter 4: Ecosystems & Communities Starting with … Climate (4.1)
Earth spinning on its axis the Sun warming Earth's surface
Meteorology Earth’s Atmosphere Weather and Climate.
III. Water and Climate.
Air Masses and Fronts.
What Causes Different Climates?
Weather and Climate Chapter 3.
Patterns in environmental quality and sustainability
Earth’s Oceans and Air presented by Prof. Geller 3 November 2005
Following information taken from:
World Geography Weather & Climate.
Presentation transcript:

1 of 21 Contributions of GPS Data to Severe Weather Forecasting in California Seth I. Gutman NOAA Earth System Research Laboratory Boulder, CO USA 80305

2 of 21 Outline Background What is GPS Meteorology? The storm of 4-5 January 2008 Advances in monitoring and prediction Other applications Conclusions

3 of 21 Acknowledgements Jian-Wen Bao 1 Dan Gottas 2 Kirk Holub 1 Isidora Jankov 2 Dave Kingsmill 2 John McGinley 1 Sara Michelson 2 Paul Neiman 1 Marty Ralph 1 Allen White 1 Tim Schneider 1 1 NOAA Earth System Research Laboratory, Boulder, CO USA 2 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, CO USA

4 of 21 When GPS was designed for the U.S. military, the use of GNSS for atmospheric remote sensing was probably the last application on their minds. It’s also reasonable to assume that the techniques developed by geodesists to estimate atmospherically induced signal delays as nuisance parameters and (2) remove them to improve survey accuracy, were not developed to improve weather forecasts. So the recognition that ground based GNSS observations could be used to study the atmosphere can rightfully be called serendipitous. This is how GPS Meteorology works and how NOAA is using it to improve its severe weather forecasts and warnings in California. Background

5 of 21 Water vapor is one of the most important components of the Earth’s atmosphere. It is the source of clouds and precipitation, and an ingredient in most major weather events. PW moves rapidly through the atmosphere, redistributing energy (latent heat) through evaporation and condensation. One of the most valuable attributes of GNSS is its ability to provide accurate water vapor estimates under all weather conditions, including thick cloud cover and precipitation. Background

6 of 21 Water vapor also plays a critical role in the global climate system: It is by far the most plentiful greenhouse gas; It absorbs and radiates energy from the sun; It affects the formation of clouds and aerosols and the chemistry of the lower atmosphere; So understanding & monitoring water vapor, and the effects it has on atmospheric radiation and circulation, is vital to the diagnosis and prognosis of long-term changes in climate including droughts & severe weather. Background

7 of 21 Overview of GPS Meteorology GPS Signal in Ionosphere  Refractivity associated with changes in electron plasma density or TEC between 50 and 400 km AGL.  Signal delays in dispersive media are inversely proportional to frequency.  Ionospheric delays are estimated (or removed) using dual frequency receivers. GPS Signal in Troposphere  Refractivity associated with changes in T,P,WV in neutral atmosphere.  Signal delays are unrelated to frequency below 30 GHz.  Delays must be modeled using assumptions about the structure and length- scale variability of these parameters.

8 of 21 January 01, 2008 to January 14, 2008 (08001 to 08014) Point Loma, CA (PLO5) La Jolla, CA (SIO3) San Diego, CA (NKXB) GPS Water Vapor Measurements

9 of 21 Major West Coast Storm 4-5 January 2008 Blizzard warning Heavy snow warning Winter storm warning Flash flood watch Flood warnings Coastal flood watch Coastal flood warning Gale warning Heavy surf warning High wind warning many others….

10 of 21 What Happened An exceptionally strong Extratropical Cyclone (a low pressure system) traversed much of the Pacific Ocean before the first main wave arrived late on January 3. The storm entrained moisture (water vapor) from the subtropics in a long narrow region called an “Atmospheric River.” The storm (actually a series of three storms) impacted the Pacific Coast from British Columbia to northern Mexico.

11 of 21 What Happened Atmospheric rivers (AR’s) are formed as part of the "warm conveyor belt", a hemispheric cycle by which the cold dry air of the Arctic flows southward, and warm humid air from the tropics is forced northward. This "conveyor belt" plays a key role in the formation of Pacific storms. Modeling studies suggest that more than 90% of the total water vapor transported from the equator toward the poles are concentrated in these rivers.

12 of 21 What Do AR’s Look Like? Atmospheric rivers (AR’s) represent the “business end” of west coast winter storms. Due to lack of observations, AR’s are poorly defined, monitored, and forecast.

13 of 21 The storm at time of major impact Note that major impacts were focused >500 miles south of the Low pressure center in this storm. This differs significantly from hurricanes, but the impacts are enormous and spread over a large area Many major impacts are associated with the landfall of the “atmospheric river” element of the storm, the precise characteristics of which are not currently monitored operationally offshore or onshore. GOES IR image of major West Coast storm Time = 0030 UTC 5 January 2008 Low pressure center is off WA coast L ~500 miles Atmospheric river 7-13 in rain 6-10 ft snow

14 of 21 Pt. Piedras Blancas (PPB; 11 m MSL) + Three Peaks (Mountain site; 1021 m MSL) L Three experimental observing sites monitored AR conditions upon land-fall Bodega Bay (BBY; 12 m MSL) + Cazadero (Mountain site; 475 m MSL) BBY PPB Goleta (GLA; 3 m MSL) + San Marcos Pass (Mountain site; 701 m MSL) GLA 500 km Distance from BBY to GLA ~500 km, i.e. the average width of an atmospheric river Each “site” ( ) includes coastal wind profiler GPS receiver surface met package rain gauge The integrated observing strategy has been developed from past experiments, and the sites are deployed as part of the Hydrometeorology Testbed, Coastal Storms Program, and “Weather-climate connection” projects.

15 of 21 Typical AR Monitoring Site Bodega Bay (BBY) Radar Wind Profiler (1) Surface Met Sensors (2) GPS Receiver and Antenna (3) (1) (2) & (3)

16 of 21 January 01, 2008 to January 07, 2008 (08001 to 08007) Bodega Bay, CA (BBY5) GPS Water Vapor Measurements AR 10.39” rain in 34h 01/0701/0601/0501/04 01/0201/01 IPW

17 of 21 Observations at Bodega Bay (upslope orientation = 230 deg) Max AR bulk flux: 115 units (total); 100 units (upslope component) Time of max AR flux: UTC 4 January 2008 Max wind in controlling layer (hourly avg): 39.4 m s -1 ; 194 deg Max IPW: 31.1 mm Max hourly rain rate: 0.8 in h -1 (20 mm h -1 ) Storm total rainfall at nearby mountain site: in (264 mm) Wind speed, direction & return signal power from wind profiler Upslope wind speed and IPW from wind profiler and GPS IPW flux and rain rate from profiler, GPS & rain gauge

18 of 21 Observations + 48-h forecasts

19 of 21 Conclusions A new forecast model moisture flux verification tool has been developed by NOAA’s Earth System Research Laboratory. The tool combines observations and NWP model output to maintain situational awareness and evaluate weather model performance. Plans are being made to transition the observing systems and moisture flux tool from NOAA Research into National Weather Service operations.

20 of 21 Contact Information: Seth I. Gutman, Physical Scientist NOAA Earth System Research Laboratory (ESRL) 325 Broadway R/GSD7 Boulder, CO Phone: (303) FAX: (303) Web:

21 of 21 Thanks for your Attention! Any Questions?