Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Creating new states of matter:
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
18th International IUPAP Conference on Few-Body Problems in Physics Santos – SP – Brasil - Agosto Global variables to describe the thermodynamics.
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
Bose-Einstein Condensates Brian Krausz Apr. 19 th, 2005.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
On the path to Bose-Einstein condensate (BEC) Basic concepts for achieving temperatures below 1 μK Author: Peter Ferjančič Mentors: Denis Arčon and Peter.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, M. Fleischhauer.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Current “Hot” Areas of Research in Physics. Mature Physics and Hot Physics.
Experiments with ultracold atomic gases
Quantum Gases: Past, Present, and Future Jason Ho The Ohio State University Hong Kong Forum in Condensed Matter Physics: Past, Present, and Future HKU.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Optical Lattices 1 Greiner Lab Winter School 2010 Florian Huber 02/01/2010.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Bose-Einstein condensates in random potentials Les Houches, February 2005 LENS European Laboratory for Nonlinear Spectroscopy Università di Firenze J.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Laser Cooling and Trapping Magneto-Optical Traps (MOTs) Far Off Resonant Traps (FORTs) Nicholas Proite.
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Bose-Einstein Condensates The Coldest Stuff in the Universe Hiro Miyake Splash! November 17, 2012.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
A Review of Bose-Einstein Condensates MATTHEW BOHMAN UNIVERSITY OF WASHINGTON MARCH 7,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Space Telescope Science Institute
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Presentation transcript:

Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center

Outline Laser cooling, magnetic trapping and BEC Optical dipole traps, fermions Optical lattices: Superfluid to Mott insulator transition Magnetic microtraps: Atom chips and 1D physics

Outline Feshbach resonances: taming the interaction The BEC-BCS transition Single atom detection

Lab impressions from all over the world Tübingen Munich Austin Osaka

Magneto-optical trap (MOT) MOT: 3s, 1 x 10 9 atoms

MOT: Limits and extensions Temperature: 50 – 150 µK for alkalis Atom number: 1 … 10 9 Narrow transitions: below 1µK (e.g. Strontium) Single atom MOT (strong quadrupole field) Huge loading rate (Zeeman slower, 2D-MOT)

The beauty of magneto-optical traps sodium lithium strontium ytterbiumerbiumdysprosium

Magnetic trapping Working principle: Magnetic field minimum provides trapping potential Evaporative cooling with radio frequency induced spin flips Technical issues: heat production in the coils, control of field minimum Pros: robust, large atom number Cons: long cooling cycle (20 s – 60 s), limited optical access

Magnetic traps for neutral atoms Ioffe- Pritchard trap 4 cm Clover leaf trap

Imaging an ultracold quantum gas „Time of flight“ technique Credits: Immanuel Bloch

„Standard“ Bose-Einstein condensation classical gas coherent matter wave T c ~ 1µK Bose-Einstein condensation

The first BEC 1995: Cornell and Wieman, Boulder

The early phase: expansion: MIT Boulder Duke condensate fraction speed of sound

The early phase: Interference between two condensates (MIT) MIT

The early phase: Vortices Boulder

Optical dipole traps Working principle: exploit AC Stark shift single beam dipole trapcrossed dipole trap 1 mm

Optical dipole traps Requirements for a good dipole trap: a lot of laser power: nm available Pro: independent of magnetic sub-level, magnetic field becomes free parameter Con: high power laser, stabilization, limited trap depth -> smaller atom number Arbitrary trapping potentials possible

Ultracold Fermi gases The challenge: 1.Identical fermions do not collide at ultralow temperatures 2.Fermions are more subtle than bosons -> everything is more difficult The solution: Take tow different spin-states or admix bosons Duke university

Ultracold Fermi gases Bose-Fermi mixtures Bosons (rubidium) Fermions (potassium) After release from the trap Florence

Optical lattices Band structure Laser configuration 2D lattice (makes 1D tubes) 3D lattice

Optical lattices Expansion of a superfluid: interference pattern visible Expansion without coherence Munich

Optical lattices Superfluidity: tunneling dominates Mott insulator: Interaction energy Dominates (no interference)

Atoms meet solids: atom chips Working principle: make miniaturized magnetic traps with minaturized electric wires: Magnetic field of a wire Homogeneous Offest-field Trapping potential for the atoms along the wire => one-dimensional geometry

Atom chips Todays‘s setup: Basel

Atom chips: 1D physics Radial confinement leads to stronger interaction Lieb-Liniger interaction parameter: Induced antibunching: Tonks-Girardeau gas Penn state

Newton‘s cradle with atoms Penn State

Feshbach resonances Microscopic innteraction mechanisms between the ultacold atoms: s-wave scattering, and (more and more often) dipole-dipole interaction Change the s-wave scattering length via magnetic field: Working principle:

Generic properties of a Feshbach resonance The situation for fermionic 6 Li: Attractive interaction Repulsive interaction Unitary regime

Making ultracold molecules Evaporative cooling in a dipole trap a = a 0 a = a 0 Maximum possible number of trapped non-interacting fermions Innsbruck

Molecules form Bose-Einstein condensates Result: bimodal distribution of molecular density distribution Condensate fraction Boulder Two fermionic atoms form a bosonic molecule

Controlling the interaction between fermions a>0: weak repulsive interaction, BEC of molecules a<0: weak attractive interaction, BCS type of pairing What happens in between?

Test superfluidity with creation of vortices Set atoms in rotation and test superfluidity by the formation of vortices MIT

Unitary regime Result: fermion are superfluid across the crossover MIT

Dynamic of inelastic processes Lifetime of the vortices MIT

Single atom detection Fluorescence imaging: -shine resonant light on atoms and keep them trapped at the same time -collect enough photons to detect the atoms Single atoms in a 1D optical lattice Bonn

Single atom detection in a 2D system The Mott insulator state Munich

Single atom detection with electron microscopy Come and see tomorrow!