12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.

Slides:



Advertisements
Similar presentations
Giant resonances, exotic modes & astrophysics
Advertisements

Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
CEA DSM Irfu 14 Oct Benoît Avez - [Pairing vibrations with TDHFB] - ESNT Workshop1 Pairing vibrations study in the Time-Dependent Hartree-Fock Bogoliubov.
1 Theory of neutron-rich nuclei and nuclear radii Witold Nazarewicz (with Paul-Gerhard Reinhard) PREX Workshop, JLab, August 17-19, 2008 Introduction to.
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
Lawrence Livermore National Laboratory UCRL-XXXX Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA This work performed under.
Mean-field calculation based on proton-neutron mixed energy density functionals Koichi Sato (RIKEN Nishina Center) Collaborators: Jacek Dobaczewski (Univ.
Towards a Universal Energy Density Functional Towards a Universal Energy Density Functional Study of Odd-Mass Nuclei in EDF Theory N. Schunck University.
Finite Nuclei and Nuclear Matter in Relativistic Hartree-Fock Approach Long Wenhui 1,2, Nguyen Van Giai 2, Meng Jie 1 1 School of Physics, Peking University,
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
International Workshop on Fundamental Symmetries: From Nuclei and Neutrinos to the Universe ECT*, Trento, June 2007 Charged-Current Neutrino-Nucleus.
Shan-Gui Zhou URL: 1.Institute of Theoretical Physics,
Single Particle Energies
15 June, 2006Istanbul, part 21 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
The physics of nuclear collective states: old questions and new trends G. Colò Congresso del Dipartimento di Fisica Highlights in Physics 2005 October.
Systematics of the First 2 + Excitation in Spherical Nuclei with Skyrme-QRPA J. Terasaki Univ. North Carolina at Chapel Hill 1.Introduction 2.Procedure.
1 Properties of hypernuclei in the Skyrme Hartree-Fock method Xian-Rong Zhou Department of physics, Xiamen University, Xiamen, China Present Status of.
CEA Bruyères-le-Châtel Kazimierz sept 2005, Poland Variational Multiparticle-Multihole Mixing with the D1S Gogny force N. Pillet (a), J.-F. Berger (a),
Introduction to Nuclear Physics
M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force.
Etat de lieux de la QRPA = state of the art of the QRPA calculations G. Colò / E. Khan Espace de Structure Nucléaire Théorique SPhN, Saclay, January 11-12,
Statistical properties of nuclei: beyond the mean field Yoram Alhassid (Yale University) Introduction Beyond the mean field: correlations via fluctuations.
The first systematic study of the ground-state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear.
Higher-Order Effects on the Incompressibility of Isospin Asymmetric Nuclear Matter Lie-Wen Chen ( 陈列文 ) (Institute of Nuclear, Particle, Astronomy, and.
Tomohiro Oishi 1,2, Markus Kortelainen 2,1, Nobuo Hinohara 3,4 1 Helsinki Institute of Phys., Univ. of Helsinki 2 Dept. of Phys., Univ. of Jyvaskyla 3.
1 The Random Phase Approximation in Nuclear Physics  Lay out of the presentation: 1. Linear response theory: a brief reminder 2. Non-relativistic RPA.
AUJOURD’ HUI…..et…. DEMAIN Keep contact with experimentalists, work together Beyond mean-field, but via Particle- Vibration Coupling.
XII Nuclear Physics Workshop Maria and Pierre Curie: Nuclear Structure Physics and Low-Energy Reactions, Sept , Kazimierz Dolny, Poland Self-Consistent.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Quantum calculation of vortices in the inner crust of neutron stars R.A. Broglia, E. Vigezzi Milano University and INFN F. Barranco University of Seville.
Exotic Nuclei in Relativistic and Non-Relativistic Models Exotic Nuclei large isospin asymmetry - nuclei close to the drip lines - superheavy nuclei non-relativistic.
Mean-Field Description of Heavy Neutron-Rich Nuclei P. D. Stevenson University of Surrey NUSTAR Neutron-Rich Minischool Surrey, 2005.
The calculation of Fermi transitions allows a microscopic estimation (Fig. 3) of the isospin mixing amount in the parent ground state, defined as the probability.
Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T.
Relativistic Description of the Ground State of Atomic Nuclei Including Deformation and Superfluidity Jean-Paul EBRAN 24/11/2010 CEA/DAM/DIF.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (I) Single-particle models P. Van Isacker, GANIL, France.
Héloïse Goutte CERN Summer student program 2009 Introduction to Nuclear physics; The nucleus a complex system Héloïse Goutte CEA, DAM, DIF
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
T=0 Pairing in Coordinate space Workshop ESNT, Paris Shufang Ban Royal Institute of Technology (KTH) Stockholm, Sweden.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
21 January 2010ITP Beijing1 Neutron star cooling: a challenge to the nuclear mean field Nguyen Van Giai IPN, Université Paris-Sud, Orsay 2.
Variational multiparticle-multihole configuration mixing approach
PAIRING CORRELATIONS AND COLLECTIVE
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
N. Schunck(1,2,3) and J. L. Egido(3)
Effect of tensor on halo and subshell structure in Ne, O and Mg isotopes Chen Qiu Supervisor: Prof. Xian-rong Zhou Xiamen University April. 13, 2012.
Variational approach to isospin symmetry breaking in medium mass nuclei A. PETROVICI Institute for Physics and Nuclear Engineering, Bucharest, Romania.
First Gogny conference, TGCC December 2015 DAM, DIF, S. Péru QRPA with the Gogny force applied to spherical and deformed nuclei M. Dupuis, S. Goriely,
DFT with Continuum Junchen Pei (Peking U) With Collaborators: US : W. Nazarewicz, G. Fann, Yue Shi, R.Harrison, S. Thornton Europe: M. Kortelainen, P.
Tailoring new interactions in the nuclear many-body problem for beyond- mean-field models Marcella Grasso Tribute to Daniel Gogny.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
Couplage de phonons = state of the art of “extended” RPA calculations G. Colò Espace de Structure Nucléaire Théorique SPhN, Saclay, January 11-12, 2005.
Nuclear density functional theory with a semi-contact 3-body interaction Denis Lacroix IPN Orsay Outline Infinite matter Results Energy density function.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Gogny-TDHFB calculation of nonlinear vibrations in 44,52 Ti Yukio Hashimoto Graduate school of pure and applied sciences, University of Tsukuba 1.Introduction.
The single-particle states in nuclei and their coupling with vibrational degrees of freedom G. Colò September 27 th, 2010.
The coordinate-space HFB approach for describing weakly-bound deformed nuclei 张一怒 指导老师: 裴俊琛 许甫荣 北京大学 October 17 th, 第十五届全国核物理大会 暨第十届会员代表大会 中国.
Continuum quasiparticle linear response theory using the Skyrme functional for exotic nuclei University of Jyväskylä Kazuhito Mizuyama, Niigata University,
Pairing Correlation in neutron-rich nuclei
Active lines of development in microscopic studies of
Nuclear structure far from stability
Open quantum systems.
Bubble structures in exotic nuclei
Beyond mean-field methods: why and how
Structure and dynamics from the time-dependent Hartree-Fock model
Structure of exotic nuclei from relativistic Hartree Bogoliubov model (II) Shan-Gui Zhou URL:
Deformed relativistic Hartree Bogoliubov model in a Woods-Saxon basis
Daisuke ABE Department of Physics, University of Tokyo
Superheavy nuclei: relativistic mean field outlook
Presentation transcript:

12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches Part 2: Nuclear Excitations: The Random Phase Approximation Nguyen Van Giai Institut de Physique Nucléaire Université Paris-Sud, Orsay

12 June, 2006Istanbul, part I2 Outline of part 1 - Introduction - Non-relativistic energy density functional - Densities and Potentials - HF and HFB in spherical symmetry - Illustrative examples - Summary Nguyen Van Giai

12 June, 2006Istanbul, part I3 Microscopic approaches to many-body, finite nuclear systems Theoretical models based on effective interactions between nucleons: - Nuclear shell model - Mean field approaches (and beyond): -Non-Relativistic (Skyrme forces, Gogny force) -Relativistic (RMF,RHF) - Molecular dynamics going away from stability regions, we need a theoretical framework which can be predictive and able to handle new situations (continuum, pairing correlations in continuum). the Hartree-Fock + Random Phase Approximation (and their extensions to include pairing effects) can be used from unstable nuclei to neutron star crust. Nguyen Van Giai

12 June, 2006Istanbul, part I4 Hartree-Fock, and HF-Bogoliubov for systems with pairing correlations Nguyen Van Giai

12 June, 2006Istanbul, part I5 Energy Density Functional in Hartree-Fock Nguyen Van Giai

12 June, 2006Istanbul, part I6 Effective Interaction: Skyrme force particle-hole channel: particle- particle channel: Skyrme interaction zero-range Nguyen Van Giai Pairing channel:

12 June, 2006Istanbul, part I7 Densities Normal density, or density matrix Abnormal density, or pairing tensor Nguyen Van Giai

12 June, 2006Istanbul, part I8 One-body densities in Hartree-Fock Nguyen Van Giai

12 June, 2006Istanbul, part I9 The Energy Density Functional Nguyen Van Giai

12 June, 2006Istanbul, part I10 The Skyrme-HF equations Variations with respect to single-particle wave functions: Nguyen Van Giai

12 June, 2006Istanbul, part I11 The Skyrme-HF effective masses Nguyen Van Giai

12 June, 2006Istanbul, part I12 The Skyrme-HF central potentials Nguyen Van Giai

12 June, 2006Istanbul, part I13 The spin-orbit and Coulomb potentials Nguyen Van Giai

12 June, 2006Istanbul, part I14 The center-of-mass correction Nguyen Van Giai

12 June, 2006Istanbul, part I15 Spherical case: radial equations in r-space Nguyen Van Giai

12 June, 2006Istanbul, part I16 Nguyen Van Giai Densities Potentials Effective masses Spin-orbit potentials From: Bender et al., Revs.Mod.Phys., 75, 121(2003)

12 June, 2006Istanbul, part I17 Nguyen Van Giai N-Z A=N+Z Binding Energy Errors From: Bender et al., Revs.Mod.Phys., 75, 121(2003)

12 June, 2006Istanbul, part I18 2-neutron separation energies Nguyen Van Giai From: Bender et al., Revs.Mod.Phys., 75, 121(2003)

12 June, 2006Istanbul, part I19 Nguyen Van Giai Single-particle energies From: Bender et al., Revs.Mod.Phys., 75, 121(2003)

12 June, 2006Istanbul, part I20 r.m.s. radii Nguyen Van Giai From: Bender et al., Revs.Mod.Phys., 75, 121(2003)

12 June, 2006Istanbul, part I21 Generalization to Hartree-Fock- Bogoliubov Nguyen Van Giai

12 June, 2006Istanbul, part I22 HFB densities in spherical case Nuclear density Abnormal (or pairing) density Kinetic energy density Spin density Nguyen Van Giai

12 June, 2006Istanbul, part I23 The Hartree-Fock-Bogoliubov Equations Nguyen Van Giai

12 June, 2006Istanbul, part I24 Hartree-Fock field and pairing field Nguyen Van Giai

12 June, 2006Istanbul, part I25 Finite-Temperature HFB E nuc = E Skyrme + E pair [ ,  ] f i =( 1+e Ei/kT ) -1  T (r) = V pair  T (r) Nguyen Van Giai where :

12 June, 2006Istanbul, part I26 Quasiparticle continuum Nguyen Van Giai

12 June, 2006Istanbul, part I27 Treatment of quasiparticle continuum (1) Nguyen Van Giai

12 June, 2006Istanbul, part I28 Treatment of quasiparticle continuum (2) Nguyen Van Giai

12 June, 2006Istanbul, part I29 Treatment of quasiparticle continuum (3) Nguyen Van Giai

12 June, 2006Istanbul, part I30 Discretization by box boundary condition Alternatively, one can enclose the system in a box of radius R. The quasiparticle spectrum is calculated with the boundary condition that the wave function vanishes at r=R. One thus obtains a discrete set of states forming a complete basis in the box. Nguyen Van Giai

12 June, 2006Istanbul, part I31 illustration: Ni isotopes Nguyen Van Giai

12 June, 2006Istanbul, part I32 E. Khan, N. Sandulescu Nguyen Van Giai

12 June, 2006Istanbul, part I33 Inner Crust Matter Crystal lattice structures ~   ~   ~ 0.5   Nguyen Van Giai

12 June, 2006Istanbul, part I34 Elementary cells Wigner-Seitz cellElementary cellLattice Nguyen Van Giai

12 June, 2006Istanbul, part I35 N.Sandulescu, Nguyen Van Giai,R.J.Liotta, Phys.Rev.C69(2004) Density in the Wigner-Seitz Cells Nguyen Van Giai

12 June, 2006Istanbul, part I36 Pairing Field in the Wigner-Seitz Cells N.Sandulescu, Phys.Rev.C70 (2004) Nguyen Van Giai

12 June, 2006Istanbul, part I37 SUMMARY A self-consistent theory of nuclear ground states. Pairing and continuum effects are treated. Applications to the description of unstable nuclei. Applications to the physics of the inner crust of neutron stars. Nguyen Van Giai

12 June, 2006Istanbul, part I38 Lectures on: Mean Field Methods for Nuclear Structure List of references for further reading 1. P. Ring, P. Schuck, “The Nuclear Many-Body Problem”, Springer-Verlag (New York, 1980) 2. Hartree-Fock calculations with Skyrme’s interaction. I: spherical nuclei, D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972) 3. Hartree-Fock calculations with Skyrme’s interaction. II: axially deformed nuclei, D. Vautherin, Phys. Rev. C 7, 296 (1973) 4. A Skyrme parametrization from subnuclear to neutron star densities, E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer: Part I, Nucl. Phys. A 627, 710 (1997); Part II, Nucl. Phys. A 635, 231 (1998); Erratum to Part II, Nucl. Phys. A 643, 441 (1998) 5. Self-consistent mean-field models for nuclear structure, M. Bender, P.-H. Heenen, P.-G. Reinhard, Revs. Mod. Phys. 75, 121 (2003) 6. Hartree-Fock-Bogoliubov description of nuclei near the neutron drip line, J. Dobaczewski, H. Flocard, J. Treiner, Nucl.Phys. A 422, 103 (1984) 7. Mean-field description of ground state properties of drip line nuclei: pairing and continuum effects, J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.-F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996) 8. Pairing and continuum effects in nuclei close to the drip line, M. Grasso, N. Sandulescu, N. Van Giai, R. Liotta, Phys. Rev. C 64, (2001) 9. Nuclear response functions, G.F. Bertsch, S.F. Tsai, Phys. Rep. 12 C (1975) 10. A self-consistent description of the giant resonances including the particle continuum, K.F. Liu, N. Van Giai, Phys. Lett. B 65, 23 (1976) 11. Continuum quasiparticle random phase approximation and the time-dependent HFB approach, E. Khan, N. Sandulescu, M. Grasso, N. Van Giai, Phys. Rev. C 66, (2002) 12. Self-Consistent Description of Multipole Strength in Exotic Nuclei I: Method, J. Terasaki, J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, M. Stoitsov, Phys. Rev. C 71, (2005) 13. Self-consistent description of multipole strength: systematic calculations, J. Terasaki, J. Engel, ArXiv nucl-th/