Glitches and precession. What is a glitch? Starquakes or/and vortex lines unpinning - new configuration or transfer of angular momentum A sudden increase.

Slides:



Advertisements
Similar presentations
Proton Cyclotron Lines in Thermal Magnetar Spectra S. Zane, R. Turolla, L. Stella and A. Treves Mullard Space Science Laboratory UCL, University of Padova,
Advertisements

2010 Glitch in Vela Pulsar Sarah Buchner SKA Bursary conference Dec 2010.
Ch. C. Moustakidis Department of Theoretical Physics, Aristotle University of Thessaloniki, Greece Nuclear Symmetry Energy Effects on the r-mode Instabilities.
Gravitational waves from pulsar glitches Lila Warszawski, Natalia Berloff & Andrew Melatos Caltech, June 2009.
パルサーグリッチと超流体渦糸のピンニング
Be born slow or die fast Spin evolution of neutron stars with alignment and counteralignment S. Eliseeva, S. Popov, V. Beskin astro-ph/
Evidence for precession of the isolated neutron star RXJ0720.4−3125 Jeng-Lwen, Chiu Institute of Physics, NTHU 2006 / 04 / 27.
Accretion in Binaries Two paths for accretion –Roche-lobe overflow –Wind-fed accretion Classes of X-ray binaries –Low-mass (BH and NS) –High-mass (BH and.
Glitches; the Link Between the Typical Radio Pulsars and the Anomalous X- ray Pulsars Jinrong Lin & Shuangnan Zhang, 2003, in preparation Physics department.
Neutron Stars and Black Holes
Neutron Stars Chapter Twenty-Three.
Low Mass X-ray Binaries and Accreting Millisecond Pulsars A. Patruno R. Wijnands R. Wijnands M. van der Klis M. van der Klis P. Casella D. Altamirano D.
Magnetars origin and progenitors with enhanced rotation S.B. Popov, M.E. Prokhorov (Sternberg Astronomical Institute) (astro-ph/ )
Radio-quiet Isolated Neutron Stars (RQINs) Jeng-Lwen, Chiu Institute of Astronomy, NTHU 2004/09/30.
November 2, 2006LIGO / pulsar workshop1 How LIGO searches are affected by theory & astronomical observations Ben Owen.
Neutron Stars and Black Holes PHYS390: Astrophysics Professor Lee Carkner Lecture 18.
YERAC On the structure of radio pulsar magnetospheres On the structure of radio pulsar magnetospheres Igor F. Malov, Еlena Nikitina Pushchino Radio.
Evolution with decaying magnetic field. 2 Magnetic field decay Magnetic fields of NSs are expected to decay due to decay of currents which support them.
SGR activity in time Sergei Popov (SAI MSU) (HEA-2006, December 2006 Moscow, IKI)
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
Be born slow or die fast Spin evolution of neutron stars with alignment and counteralignment S. Eliseeva, S. Popov, V. Beskin astro-ph/
Neutron Stars 2: Phenomenology Andreas Reisenegger ESO Visiting Scientist Associate Professor, Pontificia Universidad Católica de Chile Chandra x-ray.
Extensive population synthesis studies of isolated neutron stars with magnetic field decay Sergei Popov (SAI MSU) J.A. Pons, J.A. Miralles, P.A. Boldin,
Evolution with decaying and re-emerging magnetic field.
Calculating the moment of inertia of neutron stars Jacobus Diener Stellenbosch University, RSA Dr Alan Dzhioev and Prof Victor Voronov Bogoliubov Laboratory.
The timing behaviour of radio pulsars George Hobbs Australia Telescope National Facility
Gravitational waves from neutron star instabilities: What do we actually know? Nils Andersson Department of Mathematics University of Southampton IAP Paris.
Plasma universe Fluctuations in the primordial plasma are observed in the cosmic microwave background ESA Planck satellite to be launched in 2007 Data.
Dynamics of Polarized Quantum Turbulence in Rotating Superfluid 4 He Paul Walmsley and Andrei Golov.
Unifying neutron stars Sergei Popov (SAI MSU) in collaboration with: Andrei Igoshev (SPbSU), and Roberto Turolla (Univ. Padova)
Ferromagnetism in nuclear matter (and how it relates to neutron stars) Jacobus Diener (PhD student) Supervisors: Prof FG Scholtz and Prof HB Geyer Department.
“GRAND UNIFICATION” in Neutron Stars Victoria Kaspi McGill University Montreal, Canada.
Magnetars are strongly magnetized neutron stars with surface magnetic fields of ~10 14 G. Based on observational and theoretical studies, 7 soft gamma.
Radiation Properties of Magnetized Neutron Stars. RBS 1223
1 X-ray enhancement and long- term evolution of Swift J arXiv: Authors: O. Benli, S. Caliskan, U. Ertan et al. Reporter: Fu, Lei.
On Young Neutron Stars as Propellers and Accretors Ma Bo, Department of Astronomy, Nju, Nanjing Citations: Alpar,M.A.,APJ554,1245,2000 Illarionov and Sunyaev.1975.
Study of the LOFF phase diagram in a Ginzburg-Landau approach G. Tonini, University of Florence, Florence, Italy R. Casalbuoni,INFN & University of Florence,
Glitches and precession. What is a glitch? Starquakes or/and vortex lines unpinning - new configuration or transfer of angular momentum A sudden increase.
COOLING OF NEUTRON STARS D.G. Yakovlev Ioffe Physical Technical Institute, St.-Petersburg, Russia Ladek Zdroj, February 2008, 1. Formulation of the Cooling.
Magnetic field evolution of neutron stars: linking magnetars and antimagnetars Sergei Popov (SAI MSU) (co-authors: A. Kaurov, A. Kaminker) PASA vol. 32,
Hunting for Glitches Sarah Buchner. …are the leftover cores from supernova explosions. Almost black holes Neutron stars are very dense (10 17 kg/m 3 )
PSR J RXTE Observations of an Extraordinary Pulsar in the LMC F.E. Marshall / GSFC 16 Years of Discovery with RXTE March 29-30, 2012.
Neutron star masses: dwarfs, giants and neighbors Sergei Popov (SAI MSU) Collaborators: M. Prokhorov H. Grigorian D. Blaschke.
I.F.Malov Pushchino Radio Astronomy Observatory, Lebedev Physical Institute RUSSIA Do «magnetars» really exist? AXPs and SGRs Magnetars (dP.
Accreting isolated neutron stars. Magnetic rotator Observational appearances of NSs (if we are not speaking about cooling) are mainly determined by P,
APS meeting, Dallas 22/04/06 1 A search for gravitational wave signals from known pulsars using early data from the LIGO S5 run Matthew Pitkin on behalf.
Some theoretical aspects of Magnetars Monika Sinha Indian Institute of Technology Jodhpur.
K.M.Shahabasyan, M. K. Shahabasyan,D.M.Sedrakyan
Anti-glitch induced by collision of a solid body with the magnetar 1E Y. F. Huang Collaborator: J. J. Geng Nanjing University.
To test AXP/SGR models with eXTP NSs & magnetarshttp:// R. X. Xu Renxin Xu ( 徐仁新 ) School of Physics, Peking University (
Observational constraints on theories of pulsations Can we expect to learn something fundamental about neutron stars from their variable radio emission?
Wishing you many years of happiness, health, and pulsars. Happy Birthday, Wim!
GWDAW11, Potsdam 19/12/06 LIGO-G Z 1 New gravitational wave upper limits for selected millisecond pulsars using LIGO S5 data Matthew Pitkin for.
Glitches and precession
Vortex Creep Against Toroidal Flux Lines and Implications for Pulsar Glitches and Neutron Star Structure Erbil Gügercinoğlu Istanbul University, Department.
Superfluid turbulence and neutron star dynamics
Essential of Ultra Strong Magnetic field and Activity For Magnetars
Predicting the BRAING INDEX OF INTERMITTENT AND NULLING PULSARS
Glitches and precession
Probing Neutron Star interiors with ET ?
Lila Warszawski & Andrew Melatos
Matthew Pitkin on behalf of the LIGO Scientific Collaboration
Continuous gravitational waves: Observations vs. theory
Spectral behaviour of the M7 like NS RX J
Evolution with decaying magnetic field
Glitches and precession
Two types of glitches in a solid quark star model
Glitches and precession
Magnetars with Insight-HXMT
Pulse Nulling and Subpulse Drifting Properties in Pulsars
Presentation transcript:

Glitches and precession

What is a glitch? Starquakes or/and vortex lines unpinning - new configuration or transfer of angular momentum A sudden increase of rotation rate. ATNF catalogue gives ~50 normal PSRs with glitches. The most known: Crab and Vela Glitches are important because they probe internal structure of a NS. ΔΩ/Ω~ Spin-down rate can change after a glitch. Vela is spinning down faster after a glitch.

Crab glitch and the general idea While the crust we see (and all coupled to it) is slowing down, some component of a star is not. Then suddenly an additional momentum stored in such a “reservoir” is released and given to the crust. The crust spins-up, up the internal reservoir – down. Lyne et al. (2000) Link et al. (2000)

Glitches Unpinning of superfluid vortex lines results in a glitch. Vortex density is about 10 4 cm -2 P -1 Flux lines density is B 12 cm -2 Starquakes or vortex lines unpinning. Neutron vortices are confined in the crust. Proton superfluid is strongly coupled to the crust.

Glitches are driven by the portion of the liquid interior that is differentially rotating with respect to the crust. I c – crust + everything coupled with (i.e., nearly all the star, except superfluid neutrons). The average rate of angular momentum transfer associated with glitches is Phenomenology and the Vela pulsar (Values are for the Vela PSR) - Pulsar activity parameter Vela glitches are not random, they appear every ~840 days. A – the slope of the straight line in the figure.

General features of the glitch mechanism Glitches appear because some fraction (unobserved directly) rotates faster than the observed part (crust plus charged parts), which is decelerated (i.e., which is spinning-down). The angular momentum is “collected” by the reservoir, related to differentially rotating part of a star (SF neutrons) G – the coupling parameter. It can be slightly different in different sources. Glitch statistics for Vela provide an estimate for G. Superfluid is a good candidate to form a “reservoir” because relaxation time after a glitch is very long (~months) which points to very low viscosity.

KERS Williams-F1 used mechanical KERS. Energy is stored in a flywheel.

Critical velocity difference In most popular models glitches appear when the difference in angular velocity between the crust and the superfluid reaches some critical value. I super /I crust ~ ΔΩ/Ω ~ ΔΩ – is for the crust (we see it!) ΔΩ I crust = ΔΩ super I super ΔΩ super =ΔΩ I crust /I super = Ω = Ω

EoS and glitches P t =0.65 MeV fm -3 n t =0.075 fm -3

Which PSRs do glitch? On average young pulsars with larger spin-down glitch more frequently

Thermal effect of a glitch Hirano et al. 1997

Glitches of magnetars SGRs and AXPs are known to glitch. Several objects of both types showed one or several glitches. It is believed that magnetars’ glitches are different from PSRs’. The first was discovered in 2000: 1RXS J RXTE observations (Kaspi et al. 2000).

Glitches and bursts Sometime magnetar glitches are related to bursts, sometime – not. RXS J E From Dib et al The pulsed flux was nearly constant during glitches.

PSRs vs. magnetars Dib et al Nearly all known persistent AXPs now seen to glitch. In terms of fractional frequency change, AXPs are among the most actively glitching neutron stars, with glitch amplitudes in general larger than in radio pulsars. However, in terms of absolute glitch amplitude, AXP glitches are unremarkable.

Are PSRs and magnetar glitches similar? Dib et al. (2008), see arXiv: It seems that for some AXP glitches G is much larger thank for PSRs. Dib et al. propose that it can be related to the role of core superfluid. Many others proposed that glitches of magnetars can be related to magnetic field dissipation in the crust. As the field can be dynamically important there, its decay can result in crust cracking.

Precession in NSs P prec =P/ε, ε-oblateness: ε~10 -8 P prec ~ year Ω Time of arrival and period residuals for PSR B Wobbling angle is ~3-5 o 500 d (More complicated models are developed, too. See Akgun, Link, Wasserman, 2005) But why among ~1500 there are just 1-2 candidates… ?

Precession (nutation) See B. Link astro-ph/ If we consider the free precession, then we have a superposition of two motions: 1.Rapid (~Ω) rotation around total angular momentum axis – L 2.Slow (Ω p ) retrograde rotation around the symmetry axis (s) B0B0 B SΩ, L θwθw χ Δφ=φ max -φ min =(χ+θ w )-(χ-θ w )=2θ w Θ w – is small Ω and L are very close Beam width variation

A toy model Ω S B t flux This is a picture seen by an external observer.

In the coordinate frame of the body S B Ω In this system the rotation axis is rotation around the symmetry axis. So, it is clear that the angle between spin axis and the magnetic axis changes. This results in an additional effect in timing: Now the spin-down rate changes with the period of precession.

Complications … A neutron star is not a solid body … At least crust contains superfluid neutron vortices. They are responsible for I p ~0.01 of the total moment of inertia. There are several effects related to vortices. Neutron vortices can interact with the crust. So-called “pinning” can happen. The vortex array works as a gyroscope. If vortices are absolutely pinned to the crust then ω prec =(I p /I)Ω~10 -2 Ω (Shaham, 1977). But due to finite temperature the pinning is not that strong, and precession is possible (Alpar, Ogelman, 1987).

Superfluidity in NSs 50 years ago it was proposed (Migdal, 1959) that neutrons in NS interiors can be superfluid. Now it is assumed that neutrons are supefluid in the crust (singlet) protons are superfluid in the core (singlet) neutrons can also be superfluid in the core (triplet) Various baryons in neutron star matter can be in superfluid state produced by Cooper pairing of baryons due to an attractive component of baryon-baryon interaction. Onsager and Feynman revealed that rotating superfluids were threaded by an array of quantized vortex lines.

Peculiar behavior of RX J0720

RX J as a variable source [Hohle et al arXiv: ] Long term phase averaged spectrum variations Phase dependent variations during different observations.

~10 years period: precession??? [Hohle et al. 2009] / yrs However, the situation is not clear. New results and a different timing solution. The estimate of the period of precession slightly changed down to ~7 years.

RX J : timing residuals -for P(t 0 ) and dP/dt : phase coherent timing -in Kaplan & van Kerkwijk (2005) and van Kerkwijk 2007, without energy restriction -now: restricting to the hard band (except for ROSAT and Chandra/HRC ) +five new XMM-Newton +two new Chandra/HRC observations P(t 0 )= (91)s dP/dt=6.9742(19) s/s -long term period: (6.91 +/- 0.17) yrs Haberl (2007): (7.70 +/- 0.60) yrs for two hot spots: abs(sine) with yrs period The slide from a recent talk by Markus Hohle (Jena observatory).

Another interpretation: glitch + ? Van Kerkwijk et al. astro-ph/

Conclusion Many observed phenomena are related to internal dynamics of NSs. Glitches Precession Glitches are related to the existence of some reservoir for angular momentum. Most probably, it is a layer of superfluid neutrons in the inner crust. Some glitches of magnetars can be related to a different process.

Main papers Link astro-ph/ Glitches Link astro-ph/ Precession Dib et al. arXiv: AXP glitches