Lecture No. 8 Tests on Aggregates (cont.) Prepared by: Dr. Salah Al-Dulaijan.

Slides:



Advertisements
Similar presentations
CONCRETE MATERIALS Technology of Material II TKS 4012 Prepared by
Advertisements

Civil Engineering Materials
CE-303-Lecture #1 Fundamentals of Concrete Objectives To explain the basic concepts of concrete To explain briefly the properties of freshly mixed concrete.
Reinforced Concrete Design
LECTURE 2 CEMENT.
BUILDING STONES.  Stone → One of the oldest building material.  Rock : A large concreted mass of earthy or mineral matter or broken pieces of such a.
Lecture No. 06 Subject: Sources of Aggregates. Objectives of Lecture To explain the sources of aggregates used for making concrete.
CONCRETE MIX-DESIGN ACI
Asphalt Concrete Aggregates
Physical Science Applications in Agriculture
Lecture No
AGGREGATES There are two types of aggregates Coarse Aggregates
Ch8: Proportioning Concrete Mixes
SPECIFIC GRAVITY & ABSORPTION CAPACITY OF AGGREGATES
Masonry Cement and Mortar
Introduction Dr Magnus Currie From Scotland, UK MEng Civil Engineering
Prepared by: Marcia C. Belcher Construction Engineering Technology
Learning Objectives Relevance of fresh concrete properties
Lecture #3: Aggregate Moisture and Physical Characteristics.
Prepared by Marcia C. Belcher Construction Engineering Technology
Proportioning of Concrete Mixtures
Strength of Concrete.
Proportioning of Concrete Mixtures
Mix Design Review.
Aggregates Chapter 4.
CHAPTER TWO SOIL COMPRESSION.
“Investigating the Effect of Nano-Silica on Recycled Aggregate Concrete” Colby Mire & Jordan Licciardi Advisor: Mohamed Zeidan ET 493.
Aggregates in Civil Engineering Base and Subbase Environmental Filters Fillers Dams Cores.
“Properties of Concrete” Introduction
The Cathedral of Our Lady of the Angels. Los Angeles, California Rafael Moneo.
4.7.2 High-strength Concrete (HSC) Introduction –Definition –Classifications Choice of HSC raw material –Binding material –Excellent aggregate –Superplasticizer.
Normal Aggregate DR. Khalid Alshafei.
PROPERTIES OF CONCRETE PROPERTIES OF CONCRETE ARTICLE Effects of aggregates on properties of concrete.
Aggregates for Concrete
1. 2 By Farhan Sadiq 2k9-SCET-43/civil Muhammad Haroon 2k9-SCET-40/civil Numan Yousaf 2k9-SCET-41/civil Saqib Munir 2k9-SCET-09/civil Rashid Mehmood 2k9-SCET-06/civil.
Design of Concrete Structure I Dr. Ali Tayeh First Semester 2009 Dr. Ali Tayeh First Semester 2009.
Concrete Technology Ch8: Proportioning Concrete Mixes Lecture 14 Eng: Eyad Haddad.
CONCRETE MAKING MATERIALS –II: AGGREGATE
Chapter 3 Cement Technical Properties of Portland Cement Fineness Setting Time Soundness of the Portland Cement Strength Other properties.
Mix design of self consolidating concretes Exercise 8.
Eng. Malek Abuwarda Lecture 12 P1P1 Construction Methods Lecture 12 Production of Aggregate and Concrete.
CONCRETE TECHNOLOGY LECTURE NOTES PROF. DR. KAMBİZ RAMYAR
Cement: TYPE I, Specific Gravity=3.15 Coarse Aggregate: (BSG)SSD= 2.70
Civil Engineering Material Fine and Coarse aggregates
UNIT III MIX DESIGN. METHODS OF CONCRETE MIX DESIGN APPROCH TO MIX DESIGN * Concrete is essentially a mixture of Portland cement, water, coarse and fine.
 Classification  Features in Influencing Concrete  Fine Aggregate-Sand  Coarse Aggregate-Gravel Aggregate.
1.Initial setting time of cement:  40 to 60min  30 to 60min  15 to 60min  35 to 60min.
Necessary Information Required compressive strength at 28days: 30 Mpa Type of structure: mass concrete, beam, column. Maximum size of aggregate: 20 mm.
CVL 2407 Faculty of Applied Engineering and Urban Planning Civil Engineering Department 2 nd Semester 2013/2014 Dr. Eng. Mustafa Maher Al-tayeb.
DESTRUCTIVE TEST METHODS OF HARDENED CONCRETE
UNIT III.  Material used for engineering purpose can be divided into three group those required for their  1) Mineral Characteristics 2) Structural.
3. LIGHTWEIGHT AGGREGATES (L.W.A.)
Aggregates Aggregates are inert materials mixed with a binding material like cement or lime in the preparation of mortar or concrete. Granular material.
CVL 2407 Faculty of Applied Engineering and Urban Planning Civil Engineering Department 2 nd Semester 2013/2014 Dr. Eng. Mustafa Maher Al-tayeb.
Physical Properties of Aggregates
CONCRETE TECHNOLOGY.
Concrete Mix Design Calculations
Aggregates for Concrete
AGGREGATES.
COMPRESSIVE STRENGTH OF CONCRETE USING SAWDUST AS FINE AGGREGATE
Water - Cement Ratio.
بسم الله الرحمن الرحيم.
Concrete Mix Design Calculations
AGGREGATE.
Concrete Mix Design Calculations
Department of Civil Engineering
Concrete Mix Design Calculations
DRY CAST CONCRETE FOR BOXES
Nagarjuna college of engineering and technology
Maximum Size of Aggregate
Presentation transcript:

Lecture No. 8 Tests on Aggregates (cont.) Prepared by: Dr. Salah Al-Dulaijan

Bulck Density (ASTM C 29) Defined as the weight of the aggregate particles that would fill a unit volume. The term bulk is used since the volume is occupied by both the aggregates and voids. The typical bulk density used in making normal concrete ranges from 1200 to 1750 kg/m 3. The void contents range between 30% to 45% for coarse aggregate and 40% to 50% for fine aggregate. Void content increases with angularity and decreases with well graded aggregate.

Relative Density (Specific Gravity) The relative density of an aggregate (ASTM C 127 and C 128) is defined is the ratio of its mass to the mass of an equal absolute of water. It is used in certain computations for mixture proportioning and control. Most natural aggregates have relative densities between 2.4 and 2.9 (2400 and 2900 kg/ m 3 ). The density of aggregate used in mixture proportioning computations (not including the voids between particles) is determined by multiplying the relative density of the aggregate times the density of water (1000 kg/m 3 ).

Absorption and Surface Moisture The absorption and surface moisture of aggregates should be determined using ASTM C 70, C127, C128, and C 566 so that the total water content of the concrete can be controlled and the batch weights determined. The moisture conditions of aggregates are: Oven dray Air dry Saturated surface dry (SSD) Damp or wet

Absorption levels AggregateMoisture content at SSD (%) Free-water content (%) Coarse Fine

Moisture conditions of aggregate

Wetting and Drying Alternate wetting and drying can develop sever strain in some aggregates, and with certain types of aggregate this can cause a permanent increase in volume of concrete and eventual breakdown. Clay lumps and other friable particles can degrade when subjected to wetting and drying cycles. Also, moisture swelling of clay and shales can cause popouts in concrete.

Abrasion and Skid Resistance (ASTM C 131) Abrasion resistance of an aggregate is used as a general index of its quality. This characteristic is important when concrete is going to be subjected to abrasion, as in heavy duty floors or pavements. Low abrasion resistance may increase the quantity of fines in the concrete during mixing; and hence increases the water requirement and require an adjustment in w/c ratio. Los Angeles abrasion test as per ASTM C 131 is the most common test for abrasion test.

Strength Generally, strength of aggregate does not influence the strength of conventional concrete as much as the strength of the paste and the paste-aggregate strength. However, aggregate strength becomes important in high strength concrete. Aggregate tensile strengths range between 2 to 15 MPa, and compressive strengths range between 65 to 270 MPa.

Shrinkage Usually aggregates with high absorption may have high shrinkage on drying. Low shrinkage aggregatesHigh shrinkage aggregates Quartz, feldspar, limestone, dolomite, granite Sandstone, shale, slate, hornblende

Effect of type of aggregate on shrinkage

Resistance to Acid and other Corrosive Substances Acid solutions (pH less than 6.0) attack the calcium compounds of the cement paste, the rate of attack depends on the acidity of the solution. Siliceous aggregates may not be attacked by acidic solutions, however, calcareous aggregates often reacts with acids resulting in reduction of the solution acidity. Other gases and salts may attack and disintegrate concrete. Therefore, concrete structures subjected to harsh conditions should be protected and aggressive agents should be prevented from coming into contact with the concrete by using protective coatings.

Fire Resistance and Thermal Properties The fire resistance and thermal properties of concrete depend on the mineral constituents of the aggregates. Lightweight aggregates are more fire resistance than normal weight aggregates due to their insulation properties. Concrete containing calcareous coarse aggregates performs better under fire exposure than siliceous aggregate (granite or quartz).

Potentially Harmful Materials Aggregates are potentially harmful if they contain compounds known to react chemically with Portland cement and produce: –Volume change of the paste, aggregates, or both. –Affect the normal hydration of cement. –Harmful byproducts. Harmful materials present in aggregates are listed in Table 5-6: