The Next Generation of Hypernucleus and Hyperatom Experiments GSI, 18.10.2000 Josef Pochodzalla Univ. Mainz.

Slides:



Advertisements
Similar presentations
Hypernuclei: A very quick introduction Electroproduction of hypernuclei The experimental Program at Jefferson Lab Update on the analysis of O and Be targets.
Advertisements

Physics with Strange Hadrons at the S torage Ring for A nti- P rotons Physics Highlights Double Hypernuclei H-Dibaryon Properties of Baryons Experimental.
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Hierarchies of Matter matter crystal atom atomic nucleus nucleon quarks m m m m < m (macroscopic) confinement hadron.
1. The Physics Case 2. Present Status 3. Hypersystems in pp Interactions 4. The Experiment Future Experiments on Hypernuclei and Hyperatoms _.
1 Pion beam tracker for HADES Jerzy Pietraszko CBM Collaboration Meeting, March 9-13, 2009, GSI, Darmstadt.
CMS Heavy Ion Physics Edwin Norbeck University of Iowa.
Take R. Saito, for the HypHI collaboration GSI-Darmstadt
STORI’02Carsten Schwarz Physics with p at the Future GSI Facility Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR High.
Concept of the PANDA Detector for pp&pA at GSI Physical motivation for hadron physics with pbars The antiproton facility Detector concept Selected simulation.
May/27/05 Exotic Hadron WS 1 Hypothetical new scaler particle X for  + and its search by the (K +, X + ) reaction T. Kishimoto Osaka University.
The AMADEUS project – precision studies of the low-energy antikaon nucleon interaction Johann Zmeskal, SMI – Vienna, Austria for the AMADEUS collaboration.
HYPERNUCLEAR PHYSICS USING CEBAF BEAM PAST AND FUTURE Liguang Tang Hampton University/JLAB 4 th Workshop on Hadron Physics In China and Opportunities with.
June 2004L. Benussi - DAFNE 2004 First results on hyper-nuclear spectroscopy from the FINUDA experiment at DANE Luigi Benussi INFN, Laboratori.
X. Dong 1 May 10, 2010 NSD Monday Morning Meeting First Observation of an Anti-Hypernucleus Xin Dong for the STAR Collaboration Science 328, 58 (2010)
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
James Ritman Univ. Giessen PANDA: Experiments to Study the Properties of Charm in Dense Hadronic Matter Overview of the PANDA Pbar-A Program The Pbar Facility.
Antiproton Physics at GSI The GSI Future project The antiproton facility The physics program - Charmonium spectroscopy - Charmed hybrids and glueballs.
Workshop on Experiments with Antiprotons at the HESR – April 2002, GSI Charmed Hadrons in Matter Introduction Medium Effects in the light quark sector.
H. Koch, SMI/ÖAW Symposium Vienna, September 1, 2006 Physics Goals of PANDA  Introduction – The PANDA Project – PANDA and HESR – Status of the PANDA Project.
S.N.Nakamura, Tohoku Univ. JLab HallC Meeting 22/Jan/2010, JLab.
J-PARC: Where is it? J-PARC (Japan Proton Accelerator Research Complex) Tokai, Japan 50 GeV Synchrotron (15  A) 400 MeV Linac (350m) 3 GeV Synchrotron.
LEDA / Lepton Scattering on Hadrons Hypernuclear Spectroscopy: 12 C and 16 O, 9 Be(preliminary) high quality data available. First publication soon. Extension.
Working Group 5 Summary David Christian Fermilab.
J-PARC での YN 相互作用の研究 東北大学理学研究科 三輪浩司. Contents Physics background YN interaction Scattering experiment, spectroscopy Past experiments of YN scattering.
Hartmut Machner, MENU04 Beijing 1 Physics at COSY - up to 3.6 GeV/c - e and stochastic cooling, - stochastic extraction (10 s - min) - luminosity achieved:
Atsushi Tokiyasu (for LEPS collaboration) Experimental Nuclear and Hadronic Physics Laboratry, Department of Physics, Kyoto University.
Possibility for hypernuclei including pentaquark,   Kiyoshi Tanida (Seoul National Univ.) 19 Sep 2009 High resolution search for   &
Antiproton Physics at GSI Introduction The antiproton facility The physics program - Charmonium spectroscopy - Hybrids and glueballs - Interaction of charm.
Double hypernuclei at PANDA M. Agnello, F. Ferro and F. Iazzi Dipartimento di Fisica Politecnico di Torino SUMMARY  The physics of double-hypernuclei;
Brad Sawatzky / JLAB Acknowledgements to Liguang Tang Hampton University/JLAB MESON 2012 Krakow, Poland.
 meson in nucleus at J-PARC Hiroaki Ohnishi RIKEN New Frontiers in QDC Exotic Hadron Systems and Dense Matter – Mini Symposium on Exotic hadrons.
H. Koch, SFAIR, Lund, Sept , 2005 Hadron Physics with Antiprotons  Overview  Physics with PANDA (see J. Ritman, U. Wiedner) – Hadron.
1 Hypernuclear spectroscopy up to medium mass region through the (e,e’K + ) reaction in JLab Mizuki Sumihama For HKS collaboration Department of Physics.
P n  Systematic Study of Double Strangeness System by an Emulsion-Counter Hybrid Method Experimental motivation. 0. Previous experiment E373 (KEK-PS)
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Hypernuclear spectroscopy using (K - stop,  0 ) and (e,e’K + ) reactions Doc. dr. sc. Darko Androić University of Zagreb Physics Department.
S=  原子核実験 T.Takahashi (KEK) 2007/11/11 J-PARC ハドロン実験施設ビームライン整備拡充に向け て.
Osamu Hashimoto Department of Physics Tohoku University APCTP Workshop on Strangeness Nuclear Physics (SNP'99) February 19-22, 1999 Reaction spectroscopy.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up p e - coolerdetector High Energy Storage Ring HESR P.
Production of Double Strangeness Hypernuclei in 12 C(K -,K + ) Reaction at 1.67 GeV/c Choi Bong Hyuk Pusan National University For the E522 collaboration.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
The SKS Spectrometer and Spectroscopy of Light  Hypernuclei (E336 and E369) KEK PS Review December 4-5, 2000 Osamu Hashimoto Tohoku University.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
Introduction to Hypernuclear Physics
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
DESPEC A Algora IFIC (Valencia) for the Ge array working group.
James Ritman Univ. Giessen PANDA: An Experiment To Investigate Hadron Structure Using Antiproton Beams Overview of the GSI Upgrade Overview of the PANDA.
1 Hypernuclear  -ray spectroscopy via the (K -,  0 ) reaction K. Shirotori Tohoku Univ.
C. Schwarz Experiments with a cooled p beam on an internal target Physics program Detector set-up Carsten Schwarz p e - coolerdetector High Energy Storage.
H. Koch; Seminar Graduate College Bochum/Dortmund; Hadron Spectroscopy with Antiprotons  Historical Overview  Spetroscopy with antiproton beams.
Aye Aye Min, Khin Swe Myint, J. Esmaili & Yoshinori AKAISHI August 23, 2011 By Theoretical Investigation for Production of Double-  Hypernuclei from Stopped.
Magnetic Moment of a  in a Nucleus H. Tamura Tohoku University 1. Introduction 2.  -ray spectroscopy of  hypernuclei and spin-flip B(M1) 3. Experiments.
Weak decay of  in nuclear medium FCPPL-2015, USTC, April 8-12, 2015 Institute of High Energy Physics Qiang Zhao Institute of High Energy Physics, CAS.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Master thesis 2006 Shirotori1 Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 beam line 東北大学大学院理学研究科 原子核物理 白鳥昂太郎.
Measurement of X rays from   atom XiX Collaboration Spokesperson: K. Tanida (Kyoto Univ.) 30/June/2006.
J-PARC でのシグマ陽子 散乱実験の提案 Koji Miwa Tohoku Univ.. Contents Physics Motivation of YN scattering Understanding Baryon-Baryon interaction SU(3) framework Nature.
J-PARC における 4  He の生成と構造の研究 東北大学 大学院理学研究科 白鳥昂太郎 for the Hyperball-J Collaboration.
Nevio Grion- – LNF Scientific Committee, Frascati, May 29 th, 2003.
Hypernuclear gamma-ray spectroscopy at J-PARC K1.8 Beam line Tohoku Univ. K.Shirotori 東北大学 大学院理学研究科 白鳥昂太郎.
Search for neutron-rich hypernuclei in FINUDA: preliminary results presented by M. Palomba 1 for the FINUDA Collaboration 1 INFN and Dipartimento di Fisica,
重离子碰撞中的 ( 反 ) 超核研究 马余刚 中国科学院上海应用物理研究所 引言 RHIC-STAR 的超核测量 – 超氚核构建 – 寿命测量 – 奇异性因子 GSI 超核寿命测量实验简介 超核产生机制研究 关于 H 粒子寻找简介.
Study of  -Hypernuclei with Electromagnetic Probes at JLAB Liguang Tang Department of Physics, Hampton University & Jefferson National Laboratory (JLAB)
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
Experimental Challenges for Hypernuclear Physics at Panda Patrick Achenbach U Mainz with contributions from the PANDA Hypernuclear groups Sept. 2o11.
Florida International University, Miami, FL
LEDA / Lepton Scattering on Hadrons
LEDA / Lepton Scattering on Hadrons
Hypernuclear spectroscopy using (K-stop,p0) and (e,e’K+) reactions
Presentation transcript:

The Next Generation of Hypernucleus and Hyperatom Experiments GSI, Josef Pochodzalla Univ. Mainz

J. Pochodzalla Quark Structure of Hyperons u u d u d d ProtonNeutron s u d s d d s d s s s s 00   ... Nucleons Hyperons

J. Pochodzalla Present Status of s=-1 Nuclei Until few years ago hypernuclear studies focused on (  +,K + ) or (K -,  -  reaction New tools e + e -   1020  KK tagging DA  NE)  -spectroscopy with Ge (BNL, KEK, GSI) (e,e’K + )YX(TJNAF, MAMI-c) Topics YN interaction non-mesonic weak decay  p  pn  n  nn unique chance to study baryon-baryon weak interaction ! W su  du sd  dd Weak decays...

J. Pochodzalla Hypernuclei and Deconfinement Manifestation of the Pauli priciple on the quark ? Quark configuration u d s Baryon configuration p n  s p s p 5 He  4 He Question...

J. Pochodzalla Status of Multi - Hypernuclei Multi-Hypernuclei are a terra incognita......but they exist ! 6 candidates for  -hypernuclei are observed 1963: Danysz et al. 10 Be 1966: Prowse 6 He 1991: KEK-E Be or 13 Be 1991: KEK-E176 3 non-mesonic decays  (K -,K + )   HypernucleusB  [MeV]  B  [MeV]  He10.9   0.6  Be17.7   0.4  B27.6   0.7 HypernucleusB  [MeV]  B  [MeV]  He10.9   0.6  Be17.7   0.4  B27.6  

J. Pochodzalla  -Nuclei as a Laboratory Hyperon-hyperon interaction H -particle R.L. Jaffe (1977) Sakai et al (nucl-th/ )... „The situation in a finite nucleus will be that the low-lying states have the character of  bound states, but that some of excited states may have strong admixture of the H-nuclear states.“

J. Pochodzalla  hypernuclei by  production Electric quadrupole moment of the  by hyperfine splitting in  -atoms* ) tensor forces between quarks expectation Q   = ( ) fm 2  E(ℓ=10  ℓ=9) ~ 515 keV  E Q ~ few keV for Pb The s=-3 Challange * ) C.J. Batty (1995)... “…The precision measurements of X-rays from   Pb atoms will certainly require a future generation of accelerators and probably also of physicists.“ - spin-orbit  E ℓs ~ (  Z) 4 ℓm W quadrupole  E Q ~ (  Z) 4 Q 33 m 3  spin-orbit  E ℓs ~ (  Z) 4 ℓm W quadrupole  E Q ~ (  Z) 4 Q 33 m 3  Q  = fm 2 Q  = fm 2

J. Pochodzalla Production of s=-2 Hypernuclei relativistic HI collisions coalescence of hyperons Bodmer (1971), Rufa et al. (1989), Schaffner et al. (1991)...  - capture:  - p   + 28 MeV (K -,K + ) KEK-PS E373, BNL-E pp annihilation at rest K. Kilian (1987), DIANA coll.  threshold - - pp  K*K* p(K*) = 285 MeV/c  K*N  K   p d  {KK  } +  - pp  K*K* p(K*) = 285 MeV/c  K*N  K   p d  {KK  } +  - _ _ _ -- 3 GeV/c 2K _  p _

J. Pochodzalla  - capture  -atoms: x-rays conversion  - (dss) p(uud)   (uds)  (uds)  Q = 28 MeV Conversion probability......approximatly 5-10%

J. Pochodzalla + -+ - + -+ - _ 2.6 GeV/c Hyperon Production For example... with L =2·10 32 cm -2 s -1  700 s -1 for a C target

J. Pochodzalla  - Properties  - mean life ns Consequence... minimize distance production – capture initial momentum MeV/c  range ~ few g/cm 2

J. PochodzallaSetup beam: 3 GeV/c,   1mm; no halo (roman pots?) internal gas target e.g. Ne, width 1mm Tracking detector for  cm thick diamond strip Si strip capillary fiber  p - -  readout gas jet

J. Pochodzalla Capillary Detector Glascapillaries filled with szintillator 20  m - interaction (CHORUS) Problem... fast readout possible solution :Hybrid Phototube + ALICE pixel chip Needs R&D !

J. Pochodzalla Gamma Spectroscopy Ge box based on VEGA type detectors segmented Clover 7 cm , 14 cm long 4 seg. clover,  PH = 1.33 MeV resolution ~ 0.5 % fast electronics under development beam p - crucial point...

J. Pochodzalla Count Rate - luminosity 2·10 32 cm -2 s -1     cross section 2  b for pp  700 Hz p( MeV/c) p 500    reconstruction probability 0.5 stopping and capture probability p CAP  0.20 total stopped     3000 / day    to  conversion  probability p   0.05 total  hyper nucleus production  4000 / month gamma emission/event, p   0.5  -ray peak efficiency p GE  0.1 total single line  rate ~ 5/day „golden events“ (   trigger) ~ 500/day with KK trigger

J. Pochodzalla stopped  - K - beam, diamond target neutron detector arrays (  --, 12 C)  12 B + n BNL-AGS E885 few tens 2  decays of 4  H K - beam lineCylindrical Detector System 2  decays BNL-AGS E906 Observed captured  - per day beam/ targetdevicereactionfacility several hundreds stopped  - (K -,K + )emulsion (K -,K + )  KEK-PS E373 vertex detector +  spectrometer vertex detector spectrometer,  =30 msr device 3000 „golden events“ ~ KK trigger L =2·10 32, thin target, production vertex  decay vertex p p   GSI-HESR stopped p per sec p p  K * K * K * N   K cold anti-protons <70008·10 6 /sec 5 cm 12 C (K -,K + )  JHF statusbeam/ targetreactionexperiment Competition ¯  ¯ ¯ ¯ ¯ ¯

J. PochodzallaConclusion The anti-proton storage ring GSI can provide a unique facility to study strange hyperatoms and hypernuclei. Key points highest luminosity possible moderate beam quality micro tracking device high rate Germanium array Detailed spectroscopic studies of multi-strange systems will be possible. “hyperon laboratory”