Respiratory Physiology
heart
circuitry
heart circuitry tissues
lung heart circuitry tissues
lung heart circuitry tissues cell
STRUCTURE of respiratory system - Conducting zone - Respiratory zone
STRUCTURE of respiratory system - Conducting zone (nose, larynx, trachea, bronchi, bronchioles) The walls conducting airways contain smooth muscle -Sympathetic -Parasympathetic - 2 receptors relaxation, dilatation of the airway
STRUCTURE of respiratory system - Conducting zone Anatomic dead space -V of the conducting airways Physiologic dead space -V of the lungs that does not participapate in gas exchance
STRUCTURE of respiratory system - Conducting zone Physiologic dead space (VD) -V of the lungs that does not participapate in gas exchance Pa CO2 – PE CO2 VD = VT x Pa CO2 VT – tidal volume Pa CO2 – P CO2 of arterial blood PE CO2 – P CO2 of mixed expired air
STRUCTURE of respiratory system Respiratory zone Alveoli Lung ~ 300 x 10 6 alveoli
diaphragm inspiration expiration
inspiration – mm. intercosales externi
expiration – mm. intercosteles interni
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
inspiration – mm. intercosales externi expiration – mm. intercosteles interni
diaphragm inspiration expiration pleura parietalis
diaphragm inspiration expiration pleura visceralis
diaphragm inspiration expiration pleura parietalis pleura visceralis transmural pressure
diaphragm inspiration expiration pleura parietalis pleura visceralis transpulmonal pressure
diaphragm inspiration expiration pleura parietalis pleura visceralis intrapulmonal pressure
diaphragm inspiration expiration pleura parietalis pleura visceralis transmural pressure transpulmonal p. intrapulmonal pressure
diaphragm inspiration expiration pleura parietalis pleura visceralis transpulmonal p.
bránice - diaphragma inspirace expirace pleura parietalis pleura visceralis transmural p. PNEUMOTHORAX
diaphragm inspiration expiration pleura parietalis pleura visceralis transmural p. transpulmonal p. intrapulmonal pressure alveoli
ventilation V
Physiologic dead space Is the volume of air in the lungs that does not participate in gas exchance (i.e.e it is dead) Anatomic dead space – is the volume of conducting airways Functional dead space volume – which is made up of alveoli that do not participate in gas exchance (alveoli that are ventilated, but are not perfused by pulmonary capilary blood)
Physiologic dead space P aCO2 – P ECO2 V D =V T x P aCO2 V D – physiologic dead space (mL) V T – tidal volume (mL) P aCO2 – P CO2 of arterial blood (mmHg) P ECO2 - P CO2 of expered air (mmHg)
Physiologic dead space P aCO2 – P ECO2 V D =V T x P aCO V D = 500 x =500 x 0.25 =125
Alveolar ventilation V A = (V T – V D ) x breasths/min V A - alveolar ventilation (mL/min) VT- tidal volume (mL) VD- physiologic dead space (mL/min)
Alveolar ventilation V A = (V T – V D ) x breasths/min V A = (500 – 125) x 16 = 375 x 16 = 6000 mL/min
lung heart circuitry tissues cell
diffusion
perfusion
ventilation diffusion perfusion
ventilation - static volums - dynamic volums
STATIC VOLUMS
1 s FEV 1 VC V t DYNAMIC VOLUMS FEV x 100 VC > 80 % Physiological value:
1 s FEV 1 VC V t DYNAMIC VOLUMS OBSTRUCTION FEV1 = VC Restriction VC = FEV1
Infection inhaled allergens inhaled irritants food allergens inducing stimuli mental stress medicines Triggers
respiratory irritant factors physical activity preventing infection sick people, vaccination, intensive treatment sufficient fluid intake eat small portions breathing exercises
Differential diagnosis
steroid potentiation of beta-adrenergic receptor bronchospasmolytic effect cholinergic antagonism reduction in mucus production - anti-inflammatory effect - block the formation of antibodies - stabilization of lysosomes block - formation and release of histamine
1 s FEV 1 VC V t DYNAMIC VOLUMS RESTRICTION = FEV1 VC
difusion alveolo-capillary membrane (surfactant)
difusion alveolo-capillar membrane (surfactant)
perfusion (heart)
Pulmonary edema - cardiogenic - noncardiogenic
Cyanosis (right ventricle)
Causes of cyanosis Central cyanosis Decreased arterial saturation Hemoglobin abnormalities Peripheral cyanosis Reduced cardiac output Cold exposure Redistribution of blood flow from extremities Arterial obstruction Venous obstruction
lung heart circuitry tissues cell
perfusion (anemia)
perfusion (emboli)
perfusion (emboli)
dg. pulmonal emboli
Dg. pulmonal emboli
% hemoglobin saturation 100 pO 2 Bohrs effects
% hemoglobin saturation 100 Bohrs effect – O 2 hemoglobin dissociation curve pO 2
% hemoglobin saturation 100 Shift to the right pO2
100 čas Shift to the right temperature pH [H+] 2,3 - DPG % hemoglobin saturation pO2
100 Shift to the left temperature pH [H+] 2,3 - DPG % hemoglobin saturation pO2
% hemoglobin saturation 100 Bohr effect pO2
pO 2 mmHgsaturation (%) Values of pO 2 and corresponding values of percent saturation of hemoglobin
lung heart circuitry tissues cell