Gas Exchange 6.4.1 – 6.4.5 & H.6.1 – H.6.7. Thursday, January 29, 2015 Quiz Lecture: 6.4.1 – 6.4.5 HW TEST Moved to Tuesday, February 10 th [Transportation.

Slides:



Advertisements
Similar presentations
Gas Exchange IB Biology
Advertisements

H6 Gas exchange.
Unit 1. Energy Production and Transport
Transport of gases. Mechanism of gas transport Primary function is to obtain oxygen for use by body's cells & eliminate carbon dioxide that cells produce.
Oxygen and Carbon Dioxide transport in the blood
David Sadava H. Craig Heller Gordon H. Orians William K. Purves David M. Hillis Biologia.blu C – Il corpo umano Respiratory System and Gas Exchange.
Blood Gas Transport Dr Taha Sadig Ahmed Physiology Dept College of Medicine King Saud University Riyadh.
GAS TRANSPORT OXYGEN(O2) & CARBONDIOXIDE(CO2)
Dr Archna Ghildiyal Associate Professor Department of Physiology KGMU Respiratory System.
 What is the point of the respiring? ◦ Gas exchange provides oxygen for cellular respiration and gets rid of carbon dioxide.  How do gases move from.
GAS EXCHANGE IN HUMANS.
The Breathing System in the Human
Gas Exchange.
Respiration Chapter 42. Respiration  Gas exchange  Movement of gas across membrane  Diffusion (passive)  To improve gas absorption  Increase surface.
The Respiratory System
H.6 Gas Exchange. Hemoglobin  Hemoglobin is a protein found in RBC’s composed of 4 polypeptides, each polypeptide containing a heme group. Each heme.
AP Biology Why do we need a respiratory system? O2O2 food ATP CO 2  Need O 2 in  for aerobic cellular respiration  make ATP  Need CO 2 out  waste.
Chapter 6 The Respiratory System and Its Regulation.
Chapter 22 Respiratory System Lecture 8 Part 2: O2 and CO2 Transport
Mechanics of Breathing
Respiratory System Chapter 16 Bio 160.
Chapter 15 Respiratory System. Parts of Respiratory System Nasal Cavity Pharynx Epiglottis  covers the opening to trachea during swallowing Glottis 
Respiratory System Chapter 16. The Respiratory System Functions Exchange of O 2 and CO 2 btw atmosphere and blood Regulation of blood and tissue pH.
Transport of gases. Regulation of respiration. Mechanism of gas transport Primary function is to obtain oxygen for use by body's cells & eliminate carbon.
Gas Exchange Ana Zarate
Blood gases. Respiration the total process of delivering oxygen to the cells and carrying away the byproduct of metabolism, carbon dioxide. includes gas.
Internal Respiration Internal respiration is the diffusion of O 2 from systemic capillaries into tissues and CO 2 from tissue fluid.
Transport of oxygen and carbon dioxide. Session format At the end of this lecture the student will be able to: understand how O 2 and CO 2 are transported.
H.6 Gas Exchange.
Physiology of respiratory system. External breathing.
Gas exchange Mrs. Jackie Maldonado. Respiratory system Composed Trachea- branches into two bronchi Bronchi- branches into many bronchioles Bronchioles-
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings Concept 42.7: Respiratory pigments bind and transport gases The metabolic demands.
Gas Exchange (Core) Distinguish between ventilation, gas exchange and cell respiration.
Gas Exchange Topic 6.4.
Gas Exchange Mr. Tamashiro Distinguish between ventilation, gas exchange and cell respiration. Ventilation: The flow of air in and out of the alveoli.
Respiratory System. RESPIRATORY STRUCTURES OUR GOALS TODAY... Identify and give functions for each of the following: – nasal cavity– pharynx – larynx–
Chapter 6 The Respiratory System and Its Regulation.
Respiratory System 1. Human Respiratory System Components of the Upper Respiratory Tract Functions: Passageway for respiration Receptors for smell Filters.
AP Biology Lungs exchange surface, but also creates risk: entry point for environment into body spongy texture, honeycombed with moist epithelium.
The Respiratory System Group Members: Abby Ridley-Kerr Lia Kato Sasha Yovanovich Shelby LaRosa.
6.4 Gas Exchange.
Oxygen Transport by Blood LECTURE 20 By Dr. Khaled Khalil Assistant Professor of Human Physiology.
 the diaphragm  the abdominal muscles  atmospheric pressure  the external intercostal muscles.
Gas Exchange Part 2: Gas Exchange and Oxygen Dissociation
AS PE PHYSIOLOGY EXAM QUESTIONS & MARK SCHEMES
Transport of respiratory gases
Oxygen and Carbon dioxide Transport
Gas Exchange: Respiration
D.6: Transport of respiratory gases
Topic 6: Human Health and Physiology
The Respiratory System and Its Regulation
6.4 Gas Exchange.
6.4 Gas Exchange.
6.4 Gas Exchange Respiratory System.
6.4 Gas Exchange.
The Respiratory System
Transport and Diffusion of Gases
RESPIRATORY SYSTEM Topic 6.4 IB Biology Miss Werba.
Respiratory System 6.4 & D6.
Respiratory System 6.4 & H6.
Gas Exchange-topic 6.4 and -H 6
Gas Exchange – & H.6.1 – H.6.7.
RESPIRATION Internal vs. external.
Gas Exchange Respiratory System.
6.4 Gas Exchange.
9.1 Respiratory System.
Oxygen and Carbon dioxide Transport
Presentation transcript:

Gas Exchange – & H.6.1 – H.6.7

Thursday, January 29, 2015 Quiz Lecture: – HW TEST Moved to Tuesday, February 10 th [Transportation and Gas Exchange – 100 pts.] BioFlix: Part I and II IP Physiology: Respiration Anatomy Review: Respiratory Structure Questions: 1-3; 9-12; 15-21; 28,30 & 32 [17 questions total] For some of the questions you will need to print the images and label accordingly. Print all material first, then begin watching and answering the questions as you go along. This is for a grade!!!

6.4.1 Distinguish between ventilation, gas exchange and cell respirationDistinguish between ventilation, gas exchange and cell respiration Respiration is the transport of oxygen to cells where energy production takes place, and involves three key processes: Ventilation: The exchange of air between the lungs and the atmosphere; it is achieved by the physical act of breathing Gas exchange: The exchange of oxygen and carbon dioxide in the alveoli and the bloodstream; it occurs passively via diffusion Cell Respiration: The release of ATP from organic molecules; it is greatly enhanced by the presence of oxygen (aerobic respiration)

IP Physiology: Anatomy of RespirationAnatomy of Respiration BioFlix –BioFlix Human Respiratory System Transport of Respiratory Gases

6.4.4 Draw an label a diagram of the ventilation system, including trachea, lungs, bronchi, bronchioles and alveoli

6.4.2 Explain the need for a ventilation system Because gas exchange is a passive process, a ventilation system is needed to maintain a concentration gradient within the alveoli Oxygen is needed by cells to make ATP via aerobic respiration, while carbon dioxide is a waste product of this process and must be removed Therefore, oxygen must diffuse from the lungs into the blood, while carbon dioxide must diffuse from the blood into the lungs This requires a high concentration of oxygen - and a low concentration of carbon dioxide - in the lungs A ventilation system maintains this concentration gradient by continually cycling the air in the lungs with the atmosphere

6.4.3 Describe the features of alveoli that adapt them to gas exchange -TRIM Thin wall: Made of a single layer of flattened cells so that diffusion distance is small Rich capillary network: Alveoli are covered by a dense network of capillaries that help to maintain a concentration gradient Increased SA:Vol ratio: High numbers of spherically-shaped alveoli optimize surface area for gas exchange (600 million alveoli = 80 m 2 ) Moist: Some cells in the lining secrete fluid to allow gases to dissolve and to prevent alveoli from collapsing (through cohesion)

6.4.5 Explain the mechanism of ventilation of the lungs in terms of volume and pressure changes caused by the internal and external intercostal muscles, the diaphragm and abdominal muscles Breathing is the active movement of respiratory muscles that enable the passage of air to and from the lung The mechanism of breathing is described as negative pressure breathing as it is driven by the creation of a negative pressure vacuum within the lungs, according to Boyle's Law (pressure is inversely proportional to volume).

Inhalation Inhalation (pg 6 Diaphragm muscles contract and flatten downwards External intercostal muscles contract, pulling ribs upwards and outwards This increases the volume of the thoracic cavity (and therefore lung volume) The pressure of air in the lungs is decreased below atmospheric pressure Air flows into the lungs to equalize the pressure

Expiration Diaphragm muscles relax and diaphragm curves upwards Abdominal muscles contract, pushing diaphragm upwards External intercostal muscles relax, allowing the ribs to fall Internal intercostal muscles contract, pulling ribs downwards This decreases the volume of the thoracic cavity (and therefore lung volume) The pressure of air in the lungs is increased above atmospheric pressure Air flows out of the lungs to equalize the pressure

H.6.1 Define partial pressure – Daltons Law (pg 2-4)Daltons Law Partial pressure is the pressure exerted by a single type of gas when it is found within a mixture of gases The partial pressure of a given gas will depend on: The concentration of the gas in the mixture (e.g. O 2 levels may differ in certain environments) The total pressure of the mixture (air pressure decreases at higher altitudes) *the partial pressures of the gases within the alveoli are not the same as their atmospheric partial pressures

H.6.2 Explain the oxygen dissociation curves of adult hemoglobin, fetal hemoglobin and myoglobin Transport of Respiratory Gases Hemoglobin is composed of four polypeptide chains, each with an iron-containing heme group capable of reversibly binding oxygen As each oxygen molecule binds, it alters the conformation of hemoglobin, making it easier for others to be loaded (cooperative binding) Conversely, as each oxygen molecule is released, the change in hemoglobin makes it easier for other molecules to be unloaded.

Step wise saturation of hemoglobin

Oxygen Dissociation Curves Oxygen dissociation curves show the relationship between the partial pressure of oxygen and the percentage saturation of oxygen carrying molecules At low O 2 levels (i.e. hypoxic tissues) percentage saturation will be low, while at high O 2 levels (e.g. in alveoli) molecules will be fully saturated Because binding potential increases with each additional oxygen molecule, hemoglobin displays a sigmoidal (S- shaped) dissociation curve

Adult Hemoglobin Dissociation curves displays a typical sigmoidal shape (due to cooperative binding) There is low saturation of oxygen when partial pressure is low (corresponds to environment of the tissue, when oxygen is released) There is high saturation of oxygen when partial pressure is high (corresponds to environment of the alveoli, when oxygen is taken up)

Fetal Hemoglobin The hemoglobin of the fetus has a slightly different molecular composition to adult hemoglobin Dissociation curve is to the left of the adult hemoglobin curve (indicating a higher affinity for oxygen) This is important as it means that oxygen will move from adult hemoglobin to fetal hemoglobin in the capillaries of the uterus

Myoglobin Myoglobin is an oxygen-binding molecule found in muscles that is made of a single polypeptide with only one heme group Dissociation curve is to the left of the hemoglobin curve and does not display a sigmoidal shape (myoglobin cannot undergo cooperative binding) Myoglobin's affinity for oxygen is greater than hemoglobin and becomes saturated at low oxygen concentrations. Under normal conditions (at rest) myoglobin is saturated with oxygen and will store it until O 2 levels in the body drop with intense exercise This allows it to provide oxygen when levels are very low (e.g. in a respiring muscle) and so delays anaerobic respiration and lactic acid formation

Myoglobin

Other factors that affect dissociation Temperature: Increase in temperature increases the unloading of oxygen at the tissues.

pHDPG – 2,3-Diphosphoglycerate created in erythrocytes during glycolysis increase in DPG production increases the efficiency of O 2 unloading

H.6.3 Describe how carbon dioxide is carried by the blood, including the action of carbonic anhydrase, the chloride shift and buffering by plasma proteins Carbon dioxide is transported from the tissues to the lungs in one of three ways: IP Physiology: pg IP Physiology: Bohr effect vs. Haldane Some is bound to hemoglobin to form HbCO 2 A very small fraction gets dissolved in the blood plasma (CO 2 dissolves poorly in water) The majority (~85%) diffuses into the erythrocyte and is converted into carbonic acid

Transport as Carbonic Acid When CO 2 enters an erythrocyte, it combines with water in a reaction catalyzed by carbonic anhydrase to form carbonic acid (H 2 CO 3 ) The carbonic acid then dissociates into hydrogen ions (H + ) and bicarbonate (HCO 3 – ) Bicarbonate is pumped out of the cell and exchanged with chloride ions to ensure the erythrocyte remains uncharged – this is called the chloride shift The bicarbonate combines with sodium ions in the blood plasma to form sodium bicarbonate (NaHCO 3 ), which travels to the lungs The hydrogen ions in the erythrocyte make the environment less alkaline, causing the hemoglobin to release its oxygen to be used by cells The hemoglobin absorbs the H + ions and acts as a buffer to restore pH, the H + ions will be released in the lungs to reform CO 2 for expiration

H.6.4 Explain the role of the Bohr shift in the supply of oxygen to respiring tissues The oxyhemoglobin dissociation curve describes the saturation of hemoglobin by oxygen in cells under normal metabolism Cells with increased metabolism (e.g. hypoxic tissue) release greater amounts of carbon dioxide into the blood Carbon dioxide lowers the pH of the blood (via its conversion into carbonic acid) which causes hemoglobin to release its oxygen This is known as the Bohr effect – a decrease in pH shifts the oxygen dissociation curve to the right in tissues Hence more oxygen is released at the same partial pressure of oxygen, ensuring respiring tissues have enough oxygen when their need is greatest

Bohr Effect Cells with increased metabolism (e.g. hypoxic tissue) release greater amounts of carbon dioxide into the blood Carbon dioxide lowers the pH of the blood (via its conversion into carbonic acid) which causes hemoglobin to release its oxygen This is known as the Bohr effect – a decrease in pH shifts the oxygen dissociation curve to the right in tissues Hence more oxygen is released at the same partial pressure of oxygen, ensuring respiring tissues have enough oxygen when their need is greatest

H.6.5 Explain how and why ventilation rate varies with exercise During exercise metabolism is increased, oxygen is becoming limited and there is a build up of both carbon dioxide and lactic acid in the blood This lowers the blood pH, which is detected by chemoreceptors in the carotid artery and the aorta These chemoreceptors send impulses to the breathing center in the brain stem to increase the rate of respiration Impulses are sent to the diaphragm and intercostal muscles to change the rate of muscular contraction, hence changing the rate of breathing This process is under involuntary control (reflex response) – as breathing rate increases, CO 2 levels in the blood will drop, restoring blood pH Long term effects of continual exercise include an improved vital capacity

H.6.6 Outline the possible causes of asthma and its effects on the gas exchange system Asthma is a common, chronic inflammation of the airways to the lungs (i.e. bronchi / bronchioles) Inflammation leads to swelling and mucus production, resulting in reduced airflow and bronchospasms During an acute asthma attack, constriction of the bronchi smooth muscle may cause significant airflow obstruction, which may be life threatening Common asthma symptoms include shortness of breath, chest tightness, wheezing and coughing

Asthma may be caused by a number of variable and recurring environmental triggers, including: Allergens (e.g. pollen, molds) Smoke and scented products (e.g. cigarettes, perfumes) Food preservatives and certain medications Arthropods (e.g. dust mites) Cold air Exercise (increased respiratory rate) Stress and anxiety

H.6.7 Explain the problem of gas exchange at high altitudes and the way the body acclimatizes At high altitudes, air pressure is lower and hence there is a lower partial pressure of oxygen (less O 2 in the air) This makes it more difficult for hemoglobin to take up and transport oxygen from the alveoli (lower Hb % saturation), meaning tissues receive less O 2 A person unaccustomed to these conditions will display symptoms of low oxygen intake – fatigue, breathlessness, rapid pulse, nausea and headaches Over time, the body will begin to acclimatize to the lower oxygen levels at high altitudes: Red blood cell production increases to increase oxygen transport

H.6.7 Cont., Red blood cells will have a higher hemoglobin content with an increased affinity for oxygen Ventilation rate increases to increase gas exchange (including a larger vital capacity) Muscles produce more myoglobin and have increased vascularization (denser capillary networks) to encourage oxygen to diffuse into muscles Kidneys will begin to secrete alkaline urine (improved buffering of blood pH) and there is increased lactate clearance within the body People living permanently at high altitudes will have a greater lung surface area and larger chest sizes