Goal: To understand AC circuits and how they apply to resistors, capacitors, and inductions Objectives: 1)To learn about alternating current 2)To explore.

Slides:



Advertisements
Similar presentations
Alternating Current Circuits
Advertisements

Alternating-Current Circuits
We have been using voltage sources that send out a current in a single direction called direct current (dc). Current does not have to flow continuously.
AC Circuits Physics 102 Professor Lee Carkner Lecture 24.
AC Circuits Physics 102 Professor Lee Carkner Lecture 24.
Alternating Current Physics 102 Professor Lee Carkner Lecture 23.
AC Circuits Physics 102 Professor Lee Carkner Lecture 23.
AC Circuits PH 203 Professor Lee Carkner Lecture 23.
Alternating Current Circuits
Alternating Current Physics 102 Professor Lee Carkner Lecture 22.
Copyright © 2009 Pearson Education, Inc. Lecture 10 – AC Circuits.
chapter 33 Alternating Current Circuits
1 My Chapter 21 Lecture Outline. 2 Chapter 21: Alternating Currents Sinusoidal Voltages and Currents Capacitors, Resistors, and Inductors in AC Circuits.
Capacitors and Inductors.  A capacitor is a device that stores an electrical charge  It is made of two metallic plates separated by an insulator or.
Lab 8: AC RLC Resonant Circuits Only 4 more labs to go!! DC – Direct Current time current AC – Alternating Current time current When using AC circuits,
AC Circuits (Chapt 33) circuits in which the currents vary in time
INC 112 Basic Circuit Analysis Week 12 Complex Power Complex Frequency.
Electrical principles. The aim of today is to understand the average and RMS values in an AC circuit. Objectives: To know how alternating current is produced.
Electrical principles. Session 1 a.c circuits Objectives: To know how alternating current is produced To understand what average and RMS values are, in.
ARRDEKTA INSTITUTE OF TECHNOLOGY GUIDED BY GUIDED BY Prof. R.H.Chaudhary Prof. R.H.Chaudhary Asst.prof in electrical Asst.prof in electrical Department.
Goal: To understand RLC circuits Objectives: 1)To understand how Impedance compares to resistance 2)To learn how to calculate Voltage and Current from.
Chapter 31 Electromagnetic Oscillations and Alternating Current Key contents LC oscillations, RLC circuits AC circuits (reactance, impedance, the power.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 24 Physics, 4 th Edition James S. Walker.
Chapter 33 Alternating Current Circuits CHAPTER OUTLINE 33.1 AC Sources 33.2 Resistors in an AC Circuit 33.3 Inductors in an AC Circuit 33.4 Capacitors.
1 Chapter An alternator 3 The Great Divide: 60 Hz vs 50 Hz  is an angular frequency.  =2  f where f is the frequency in Hertz (Hz) In the US.
AC electric circuits 1.More difficult than DC circuits 2. Much more difficult than DC circuits 3. You can do it!
Alternating Current Circuits
INC 111 Basic Circuit Analysis
Chapter 24 Alternating-Current Circuits. Units of Chapter 24 Alternating Voltages and Currents Capacitors in AC Circuits RC Circuits Inductors in AC Circuits.
1 Alternating Current Circuits Chapter Inductance CapacitorResistor.
110/16/2015 Applied Physics Lecture 19  Electricity and Magnetism Induced voltages and induction Energy AC circuits and EM waves Resistors in an AC circuits.
The Last Leg The Ups and Downs of Circuits Chapter 31.
Capacitors in AC Circuits. In a capacitor in a dc circuit, charge flows until the capacitor is charged. In an ac circuit with a capacitor, charge flows.
Alternating Current Circuits. Resistance Capacitive Reactance, X C.
Lecture 13 final part. Series RLC in alternating current The voltage in a capacitor lags behind the current by a phase angle of 90 degrees The voltage.
Lecture 17 AC circuits RLC circuits Transformer Maxwell.
Alternating Current (AC) R, L, C in AC circuits
Chapter-23 Alternating Current Circuits. AC Circuits All the equipment in this operating room use alternating current circuits.
Fig 33-CO These large transformers are used to increase the voltage at a power plant for distribution of energy by electrical transmission to the power.
Slide 1Fig 33-CO, p Slide 2Fig 33-1, p the basic principle of the ac generator is a direct consequence of Faraday’s law of induction. When.
April 26 th, 2006 AC Circuits PHYS 102 Where T is the period of oscillation.
Chapter 8 Alternating Current Circuits. AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source An AC circuit.
Alternating-Current Circuits Physics Alternating current is commonly used everyday in homes and businesses throughout the word to power various.
Alternating Current Circuits. AC Sources  : angular frequency of AC voltage  V max : the maximum output voltage of AC source.
1© Manhattan Press (H.K.) Ltd Series combination of resistors, capacitors and inductors Resistor and capacitor in series (RC circuit) Resistor and.
Announcements Midterm Exam next Friday In class, ~1 hr. Closed book, one page of notes Bring a calculator (not phone, computer, iPad, etc.) Practice problems.
Alternating Current Capacitors and Inductors are used in a variety of AC circuits.
Announcements Midterm Exam next Wednesday Exam starts at 6 PM, ~1 hr. Closed book, one page of notes Bring a calculator (not phone, computer, iPad, etc.)
Physics 213 General Physics Lecture Last Meeting: Self Inductance, RL Circuits, Energy Stored Today: Finish RL Circuits and Energy Stored. Electric.
ALTERNATING CURRENT AND VOLTAGE
Inductors and AC Circuits
Network Circuit Analysis
Alternating Current Electricity
Physics 102: Lecture 12 AC Circuits L R C 1.
Exam 2 in two weeks! Lecture material Discussion/HW material
Inductors and AC Circuits
5. Alternating Current Circuits
Chapter 22: AC Circuits Figure (a) Direct current. (b) Alternating current.
Inductors and AC Circuits
Chapter 31 Electromagnetic Oscillations and Alternating Current
Inductors and AC Circuits
General Physics (PHY 2140) Lecture 19 Electricity and Magnetism
Alternating Current Circuits and Electromagnetic Waves
AC Circuits 12.2.
PHYS 221 Recitation Kevin Ralphs Week 8.
Lecture Outline Chapter 24 Physics, 4th Edition James S. Walker
ECE131 BASIC ELECTRICAL & ELECTRONICS ENGG
Alternating Current Circuits
Chapter 33 Problems 3,10,17,21,22,26,32,33,37.
Physics 312: Electronics (1) Lecture 7 AC Current I Fundamentals of Electronics Circuits (with CD-ROH) By: Charles Alexander, Hathew Sadika, McGraw Hill.
Presentation transcript:

Goal: To understand AC circuits and how they apply to resistors, capacitors, and inductions Objectives: 1)To learn about alternating current 2)To explore how voltages and currents of simple AC circuits compare to DC circuits 3)To understand Capacitors in an AC circuit 4)To understand Inductors in an AC circuit

What is alternating current? So far we have looked at what is called “direct current”. That is you have a constant current with time. However long ago it was discovered that it was far more efficient and useful to use a current that varied with time. Alternating current fluxuates over some time period from 0A to its maximum. For the home the time span of the fluxuation is 1/60 th of a second (a frequency of 60 Hz).

Voltage with time The voltage is a sine wave. V(t) = Vmax * sin(wt) where w is the angular frequency Actual physical frequency is f = w/2π And period = 1/f

Root Mean Square The average voltage or power is found by the Root Mean Square. RMS is just the average of the square. The square of the voltage fluxuates from 0 and 1. The average of the square of the voltage is 0.5. So: V RMS = Vmax / 2 1/2 P = V 2 / R therefore Pave = ½ Pmax (i.e. Pave = Vave 2 / R = ½ Vmax 2 / R) Finally the current is: I RMS = Imax / 2 1/2

DC vs AC DC: V = IR P = IV AC: Vrms = Irms R Vmax = Imax R Vmax = Vrms * 2 1/2 Prms = Irms Vrms = 0.5 Imax Vmax = 0.5 Pmax Pmax = Imax Vmax V RMS = Vmax / 2 1/2 I RMS = Imax / 2 1/2 And you can mix and match here…

Examples If the Vrms of a circuit is 5V and the resistance is 10 Ohms then what is the: A) Maximum Voltage B) RMS Current C) Maximum Current D) RMS power

Capacitors in an AC Circuit Q = C V But if V changes then Q is going to change. This means there will be a current. I = Δq / Δt = C Δv / Δt So, I = Imax sin(wt + π/2) In a capacitor the current is 90 degrees out of phase with the rest of the circuit! The voltage is -90 degrees out of phase.

Voltage for Capacitor Clearly the voltage will change with time. This is a problem if we want equations. So, what we do instead is look at the maximum voltage. Vc = I Xc (or Vmax = Imax Xc and Vrms = Irms Xc) Here we have created a Resistance like term that is called the reactance of the capacitor. The units of Xc will be Ohms. And Xc = 1/(wC) = 1/(2πf C) So, Xc is the effective resistance of the capacitor in an AC circuit.

Sample You have a 0.01 F capacitor. If the angular frequency of the AC current is 60 Hz then find: A) the reactance of the capacitor. B) If attached to a 5 Vrms power source what is the maximum current?

Voltage for Inductor For an inductor V = I X L Here X L is the reactance of the inductor. And X L = w L = 2πf L Sample: You have a rms current of 5A. If the frequency is 60 Hz and the Inductance is 0.2 H then what is the maximum voltage across the inductor?

Phase However, for an Inductor, the current lags 90 degrees BEHIND the normal. So, for a resistor, current as normal. Capacitor, 90 degrees ahead (voltage 90 behind) Inductor, 90 degrees behind (voltage 90 ahead) So, by using a capacitor or inductor you can get parts of your circuit to do different things at different times!

Conclusion We learned that alternating current is current that varies with time. We learned how to find RMS and Max voltage, power, and currents. We learned how to find the reactance of capacitors and inductors. We learned how to use the reactance of capacitors and inductors in circuits to find voltage and current.