© OECD/IEA 2010 From Basic Energy Statistics to Energy Balances IEA Energy Statistics Course 24 October – 28 October 2011 Davide D‘Ambrosio Energy Balance.

Slides:



Advertisements
Similar presentations
Definition of Primary and Secondary Energy
Advertisements

Kari Grönfors Effects of ETS data and methodology on GHG inventory time series in Finland.
© OECD/IEA, 2008 Energy Balance vs. Energy Efficiency Indicators Michel Francoeur Head of Section Energy Statistics Division International Energy Agency.
© OECD/IEA 2010 Data Compilation Issues for Electricity and Heat Energy Statistics Workshop Beijing, China, Sept Pierre Boileau International Energy.
UNSD/UNEP data collection on waste DI Milla Neubauer, Qatar 19 June
Session 4: Coal statistics United Nations Statistics Division International Workshop on Energy Statistics September 2012, Beijing, China.
© OECD/IEA 2011 The Role and Importance of Energy Statistics Energy Statistics Workshop: Achievements and future challenges Beijing, China, 24 September.
EUROPEAN TOPIC CENTRE ON AIR AND CLIMATE CHANGE Overview of main reporting problem areas in energy balances/ energy related parts of GHG inventories Workshop.
© OECD/IEA 2013 Annual Renewables Questionnaire Overview IEA Energy Statistics Training Paris, 4–8 March 2013 Rachael Hackney, Georgios Zazias Annual Renewables.
© OECD/IEA 2013 Annual Oil Questionnaire Overview Energy Statistics Training Paris, 4-8 March, 2013 Mark Mateo, Claire Morel Annual Oil Statistics.
Session 4: Oil statistics United Nations Statistics Division International Workshop on Energy Statistics September 2012, Beijing, China.
Session 4: Gas statistics United Nations Statistics Division International Workshop on Energy Statistics September 2012, Beijing, China.
6B.1 1 UNFCCC - NAI SOFTWARE Sector: Energy Practical Aspects and Exercises CGE Greenhouse Gas Inventory Hands – on Training Workshop for the African Region.
1 WORKSHOP ON THE PREPARATION OF THE FOURTH NATIONAL COMMUNICATION FROM ANNEX I PARTIES Dublin, 30 September – 1 October 2004 National circumstances in.
11 Energy in Denmark Observed energy consumption and adjusted gross energy consumption.
Recent international developments in Energy Statistics United Nations Statistics Division International Workshop on Energy Statistics September 2012,
CANADA’S REPORT ON ENERGY SUPPLY AND DEMAND Energy Balances Gary Smalldridge, Chief, Energy Section, Manufacturing and Energy Division May 2009.
1 1 Definition of Primary and Secondary Energy Ms. Sara Øvergaard, Advisor, Statistics Norway 4th meeting of the Oslo Group on Energy Statistics, 2-6 February.
1 1 Principles for energy balances in Norway By Ann Christin Bøeng Statistics Norway.
EWG47 12.c. RE Share Doubling Goal - 1/17 The 47 th Meeting of APEC Energy Working Group (EWG) Kunming, China, May c. Memorandum for Renewable.
© OECD/IEA th Oslo Group Meeting on Energy Statistics Baku, September 2013 Future Activities of the IEA on Energy Statistics Jean-Yves Garnier.
UK Energy Balances Iain MacLeay – Head Energy Balances, Prices and Publications Date May 2009.
Energy balances in Sweden Per Anders Paulson Swedish Energy Agency.
© OECD/IEA 2011 Comparing the UNSD, IEA and Eurostat balances 6th meeting of the Oslo City Group Canberra, Australia, 2-5 May 2011 Karen Tréanton Section.
1 N.K. Tovey ( 杜伟贤 ) M.A, PhD, CEng, MICE, CEnv Н.К.Тови М.А., д-р технических наук Energy Science Director CRed Project HSBC Director of Low Carbon Innovation.
1. 2 Energy balance is used as a tool for analyzing country’s energy situation in each year and also for showing the energy structure of the country in.
ENERGY STATISTICS IN MALAYSIA NOOR AIZAH A.KARIM Head, Energy Information Energy Commission Malaysia The Sixth Oslo Group Meeting on Energy.
International Workshop on Energy Statistics Baku, Azerbaijan, September 2011 Experience of Azerbaijan on compilation of the Energy Balance Rauf Gurbanov,
Oil. What is oil? Petroleum (crude oil) –complex liquid mixture of hydrocarbons, with small amounts of S, O, N impurities Most valuable natural resource.
1 IRES, Chapter 8 Energy Balance Vladimir Markhonko United Nations Statistics Division The Oslo Group on Energy Statistics Fifth meeting, Cork, Ireland,
Section 5: Energy Balance Table Dr. Congxiao Shang Room No.: 01 37P ENV-2D02 (2006):Energy Conservation – power point versions of lectures.
International Energy Agency © OECD/IEA, 2008 International Workshop on Energy Statistics Mexico 2-5 December 2008 Units of Measurement and Conversion Factors.
The energy balance in Finland The 7th Oslo Group Meeting, Helsinki Leena Timonen
Implementation of energy accounts in Finland The 7th Oslo Group Meeting, Helsinki Jonna Hakala
Energy Systems AnalysisArnulf Grubler Energy Data A brief summary.
International Energy Agency © OECD/IEA, 2008 International Workshop on Energy Statistics Mexico, 2-5 December 2008 From Basic Energy Statistics to Energy.
Coverage of the SEEA-Energy in the ESCM Kristine Kolshus and Ilaria DiMatteo 7 th Oslo Group meeting October 2012, Helsinki, Finland.
1 1 Draft chapter 5. Energy balances Ann Christin Bøeng Division for energy and environmental statistics Statistics Norway.
Copyright 2010, The World Bank Group. All Rights Reserved. Energy statistics, part 2 Production and use of energy 1 Business statistics and registers.
The System of Environmental-Economic Accounting for Energy (SEEA-Energy) United Nations Statistics Division International Workshop on Energy Statistics.
O SLO GROUP ON ENERGY STATISTICS H ELSINKI, F INLAND, O CTOBER 2012 Azerbaijan’s experience in making Energy balance Rauf Gurbanov, Head of the unit.
11 Energy in Denmark Observed energy consumption and adjusted gross energy consumption.
© OECD/IEA 2011 Indicator 25: Final Energy Consumption United Nations Economic Commission for Europe 30 October – 1 November 2012, Geneva Anna Zyzniewski.
International Energy Agency © OECD/IEA, 2008 Harmonising greenhouse gas emissions inventories with energy statistics: The work of the IEA with the IPCC.
The Swedish Energy Foresight Energy supply and use in Sweden 2001, TWh.
UNSD Recent international developments in Energy Statistics.
CO 2 emissions on a quarterly basis Maarten van Rossum and Sjoerd Schenau Presented by Ellen Brinksma.
Renewable Energy Statistics Keep-on-Track! 1 st Policy Workshop 23 January
S T A T I S T I K A U S T R I A Energy Balances, Energy Accounts and the world beyond Wolfgang Bittermann 12th Meeting of the London City.
Energy Balance Tables Unified Global Framework developed and maintained by United Nations Statistical Division.
SEMINAR ON Mainstreaming Energy Sustainable Development Goals (SDGs), Targets and Indicators into Statistical Programmes in Select African Countries
International Workshop on Energy Statistics May 2016 Beijing, China Leonardo Rocha Souza.
Energy Balances & Energy SDG Indicators
End Use Survey: Manufacturing, Residential and Commercial Sector
Net Energy Net energy = Higher ratio means greater net energy
Gestão de Energia: 2016/17 Energy Analysis: Process Analysis (cont.)
International Workshop on Energy Statistics Mexico, 2-5 December 2008
Energy Policy Statistical Support Unit
ESCM – Chapter 1.
PEFA Physical Energy Flow Accounts
International Workshop on Energy Statistics
Energy in Denmark 2014 Danish Energy Agency.
Chapter 8 – Energy Balances
PEFA Physical Energy Flow Accounts
The importance of energy balances
UNFCCC – NAI SOFTWARE Sector: Energy Practical Aspects and Exercises
PEFA Physical Energy Flow Accounts
PEFA Physical Energy Flow Accounts
Nonrenewable Energy Resources
Agenda point 5 energy PSUTs: Main Conceptual Choices
Presentation transcript:

© OECD/IEA 2010 From Basic Energy Statistics to Energy Balances IEA Energy Statistics Course 24 October – 28 October 2011 Davide D‘Ambrosio Energy Balance Statistics Energy Statistics Division

© OECD/IEA 2010 Outline 1. Why calculate an energy balance? 2. Energy balance principles 3. IEA energy balance layout 4. Using the energy balance with economic indicators 5. Harmonisation 6. IEA Balance builder

© OECD/IEA Why calculate an energy balance? To compare  Energy sources in the energy supply of a country  Sectors of economic activity  Countries To analyse and monitor  Energy efficiency  Dependence on energy imports or exports  Data quality

© OECD/IEA 2010 Messages can differ  What is the importance of renewables in the energy mix?  What is happening with CO 2 emissions (Kyoto targets)?  General confusion by users - this could pave the way to speculation Which data to use/trust when assessing legally binding commitments?

© OECD/IEA 2010 What is the importance of renewables in the energy mix? Depends on  Methodology used to calculate the primary energy equivalent of electricity from non-combustion processes (physical energy content vs. substitution)  Classification / definitions of what is renewable (peat is sometimes included)  Presentation: how is supply calculated? (e.g. bunkers in or out, statistical difference above or below)

© OECD/IEA 2010 IEA energy balance system 5 IEA/Eurostat/UNECE Annual Questionnaires OR National publications, websites Mtoe Original Units Mt of CO 2 Coal Oil Gas Renewables + Waste Electricity + Heat

© OECD/IEA Energy balance principles a. choice of unit b. net vs. gross calorific values c. choice of conversion factors d. choice of primary energy form for energy that is not combusted e. Primary energy equivalent (physical energy content vs. substitution method) f. temperature adjustments g. fiscal year vs. calendar year

© OECD/IEA 2010 a. What units? Mtoe terajoules kilowatt-hours Mtce MBtu IEA opted for Mtoe and TJ Eurostat and UNSD opted for TJ

© OECD/IEA 2010 b. Net vs. Gross Calorific Values? Difference between NCV and GCV is the latent heat of vaporisation of the water produced during combustion 5% 10% IEA /Eurostat / UNSD use Net Calorific Values

© OECD/IEA 2010 c. Conversion factors COAL Physical units (tonnes) are converted to energy units using NCV [kJ/kg], reported in the questionnaires (varies over time) Specific NCV for Production, Imports, Exports, Inputs to Public Power Plants, Coal used in Coke Ovens, Blast Furnaces and Industry Average NCV for all other flows COAL GASES Data collected in gross TJ, then converted to net TJ (0.9·gross TJ) and then to Mtoe (1 TJ = Mtoe) CRUDE OIL AND OIL PRODUCTS Using NCV [kJ/kg] Primary oil - Specific NCV for Production, Imports and Exports, reported in the questionnaires (varies over time) Oil products - region specific default values

© OECD/IEA 2010 c. Conversion factors NATURAL GAS Figures collected in Mm 3 and gross TJ (energy unit). They are converted to net TJ (0.9·gross TJ) and then to Mtoe (1 TJ = Mtoe) ELECTRICITY Figures collected in TWh, then electricity production is converted to Mtoe (1 TWh = Mtoe) Gross electricity production is shown and the own use and losses are shown separately

© OECD/IEA 2010 Latest developments concerning NCVs  The IPCC analysed country submissions to the UNFCCC and suggested new default NCVs for the 2006 IPCC Guidelines  IEA decided to remove double rounding errors by keeping NCVs in kJ/kg rather than toe/tonne (which affected all fuels)  IEA and Eurostat were using different NCVs for oil products – we have now agreed to use the same values for Europe  For the last 3 years IEA has used region-specific values for the oil products in OECD countries and NCVs for some non-OECD countries have been revised.

© OECD/IEA 2010 d. Primary energy form Heat  nuclear heat and electricity production  geothermal heat and electricity production  solar heat production Electricity  hydro  wind  wave/ocean  photovoltaic solar electricity production First energy form downstream for which multiple energy uses are practical

© OECD/IEA 2010 Physical energy content method  uses physical energy content of the primary energy source  nuclear 33%  geothermal 10%  solar, wind, etc. 100% Partial substitution method  represents the amount of energy necessary in conventional thermal plants  difficult to choose efficiency  not relevant for countries with a high share of hydro IEA opted for TPES nuclear, hydro, geothermal, solar, etc. e. Primary energy equivalent

© OECD/IEA 2010 Physical energy content vs. partial substitution Using physical energy content method Using partial substitution method Energy Balance of Sweden Nuclear 5.92 Hydro 0.18 Wind Nuclear Hydro 0.44 Wind TPES TPER

© OECD/IEA 2010 Physical energy content vs. partial substitution Non-combusted sources can have very different shares! Using physical energy content method Using partial substitution method Supply of Sweden

© OECD/IEA 2010 IEA energy balance layout: compact source of information Electricity and heat output Non-energy use Other final consumption Transformation and energy industries own use Industry Transport Final consumption Supply Flows Comparable information for all products Totals Comparable energy units (Mtoe) Global picture of energy situation in a country

© OECD/IEA 2010 SUPPLY ANDCoalCrudeOilGasNuclearHydroGeotherm.Combust.ElectricityHeatTotal CONSUMPTION& peatoilproductssolarrenew. etc.& waste Production Imports Exports Intl. marine bunkers Intl. aviation bunkers Stock changes TPES Transfers Statistical differences Electricity plants CHP plants Heat plants Blast furnaces Gas works Coke/pat.fuel/BKB plants Oil refineries Petrochemical plants Liquefaction plants Other transformation Energy industry own use Losses TFC INDUSTRY TRANSPORT OTHER NON-ENERGY USE Energy balance Transformation - Negative value represents an input, positive value represents an output - Transformation losses appear in the Total column as negative figures Supply Refined products and electricity are secondary energy: production = 0 Coal-to-coal transformation Value represents transformation losses; further detail available in BIGBAL

© OECD/IEA 2010 Some countries use “flow” charts to visualise their energy balances - no confusion as long as similar principles have been used Alternative presentations

© OECD/IEA 2010 Energy Production/TPES Net Oil Imports/GDP TPES/GDP TPES/Population Oil Supply/GDP Oil Supply/Population Electricity Consumption/GDP Electricity Consumption/Population Using: Population GDP (using 2000 exchange rates to US dollars) GDP-PPP (using 2000 PPPs to US dollars) 4. Using the energy balance with economic indicators

© OECD/IEA 2010 TPES & GDP

© OECD/IEA Harmonisation There are at least 3 levels for harmonisation:  country – organisation  organisation – organisation (InterEnerStat)  energy – economic – environmental (Oslo City Group, London City Group)

© OECD/IEA 2010 Joint manuals help the process  In 2004/2005 the IEA and Eurostat prepared a joint manual to help countries collect and submit energy data  The UN has just completed International Recommendations on Energy Statistics (IRES) to update the previous UN manuals from the 1980s/1990s

© OECD/IEA 2010 InterEnerStat has harmonised definitions across organisations  APEC and Eurostat/IEA: Crude oil is a mineral oil of natural origin comprising a mixture of hydrocarbons and associated impurities, such as sulphur. It exists in the liquid phase under normal surface temperature and pressure and its physical characteristics (density, viscosity, etc.) are highly variable. This category includes field or lease condensate recovered from associated and non-associated gas where it is commingled with the commercial crude oil stream.  OLADE: This is a complex mixture of hydrocarbons of different molecular weights, with a fraction (generally small) of compounds containing sulphur and nitrogen. The composition of petroleum is variable and may be divided into three classes according to the residues that are formed during distillation: paraffins, asphalts or a mixture of the two. Crude oil is used as a raw material for refineries where it is processed to obtain products.  OPEC: Crude oil is technically defined as a mixture of hydrocarbons that exists in the liquid phase in natural underground reservoirs and remains liquid at atmospheric pressure after passing through surface separating facilities. Production volumes reported as crude oil include:  1. Liquids technically defined as crude oil  2. Small amounts of hydrocarbons that exist in the gaseous phase in natural underground reservoirs but are liquid at atmospheric pressure after being recovered from oil well (casing head) gas in lease separators.  3. Small amounts of non-hydrocarbons produced and remaining with oil.  UNSD: Crude Oil/Petroleum: A mixture of pentanes and heavy hydrocarbons that may be contaminated with sulphur compounds which is recovered at a well from an underground reservoir and is liquid when its volume is measured. Excludes raw gas and condensate.

© OECD/IEA 2010 Benefits of harmonisation would be felt at all levels  National administrations  Data users  Policy makers  General public  International organisations Although harmonisation is the way to go, we all know that it is a lengthy process.

© OECD/IEA IEA Balance Builder Available at Two options: 1. Shows links from basic energy statistics (“commodity balances”) to the energy balance 2. shows links from the five annual questionnaires to the energy balance (via the basic energy statistics)

© OECD/IEA IEA balance builder  Shows a country what their data will look like in the IEA format (so no surprises on publication day)  Shows the country’s statisticians how to construct an energy balance (and what data they need to do so)  Highlights the importance of accurate NCVs

© OECD/IEA 2010 Conclusions Good and harmonised energy balances:  Require good quality statistics (data, calorific values)  Are a compact source of energy information  Enable accurate verification of energy statistics  Are the foundation for basic energy indicators and CO 2 emissions estimates  Are not essential, but highly recommended!