Simulation Study of Three-Dimensional and Nonlinear Dynamics of Flux Rope in the Solar Corona INOUE Satoshi(Hiroshima University/Earth Simulator Center),

Slides:



Advertisements
Similar presentations
Progress and Plans on Magnetic Reconnection for CMSO For NSF Site-Visit for CMSO May1-2, Experimental progress [M. Yamada] -Findings on two-fluid.
Advertisements

Lecture 9 Prominences and Filaments Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun,"
Particle acceleration in a turbulent electric field produced by 3D reconnection Marco Onofri University of Thessaloniki.
1 A New Model of Solar Flare Trigger Mechanism Kanya Kusano (Hiroshima University) Collaboration with T.Maeshiro (Hiroshima Univ.) T.Yokoyama (Univ. of.
The magnetic nature of solar flares Paper by E.R. Priest & T.G. Forbes Review presented by Hui Song.
The Relationship Between CMEs and Post-eruption Arcades Peter T. Gallagher, Chia-Hsien Lin, Claire Raftery, Ryan O. Milligan.
Observations and Magnetic Field Modeling of CMEs’ Source Regions Yingna Su Harvard-Smithsonian Center for Astrophysics Collaborators: Adriaan van Ballegooijen,
TRACE and RHESSI observations of the failed eruption of the magnetic flux rope Tomasz Mrozek Astronomical Institute University of Wrocław.
Lecture 4 The Formation and Evolution of CMEs. Coronal Mass Ejections (CMEs) Appear as loop like features that breakup helmet streamers in the corona.
Cumulus Forced; pushed upward by external forces, i.e. lifting by surface convergence, topography etc. Active; growing upward from self-forcing, i.e. buoyancy,
The CD Kink Instability in Magnetically Dominated Relativistic Jets * The relativistic jets associated with blazar emission from radio through TeV gamma-rays.
ESS 7 Lecture 14 October 31, 2008 Magnetic Storms
1 Diagnostics of Solar Wind Processes Using the Total Perpendicular Pressure Lan Jian, C. T. Russell, and J. T. Gosling How does the magnetic structure.
Horizontal Convective Rolls Asai papers & Simulations w/ ARPS.
Nanoflares and MHD turbulence in Coronal Loop: a Hybrid Shell Model Giuseppina Nigro, F.Malara, V.Carbone, P.Veltri Dipartimento di Fisica Università della.
Chip Manchester 1, Fang Fang 1, Bart van der Holst 1, Bill Abbett 2 (1)University of Michigan (2)University of California Berkeley Study of Flux Emergence:
Two energy release processes for CMEs: MHD catastrophe and magnetic reconnection Yao CHEN Department of Space Science and Applied Physics Shandong University.
Flux emergence: An overview of thin flux tube models George Fisher, SSL/UC Berkeley.
Vincent Surges Advisors: Yingna Su Aad van Ballegooijen Observations and Magnetic Field Modeling of a flare/CME event on 2010 April 8.
Discussion Group B: Progress on Initiation Mechanisms 1. Determine topology of initiating field –Initiate broad observational investigation on filament.
Solar Physics & upper Atmosphere Research Group University of Sheffield A possible method for measuring the plasma density profile along coronal loops.
Center for Space Environment Modeling Ward Manchester University of Michigan Yuhong Fan High Altitude Observatory SHINE July.
Ward Manchester University of Michigan Coupling of the Coronal and Subphotospheric Magnetic Field in Active Regions by Shear Flows Driven by The Lorentz.
Kathy Reeves Harvard-Smithsonian Center for Astrophysics Terry Forbes University of New Hampshire Partitioning of energy in a loss-of-equilibrium CME model.
Center for Space Environment Modeling Numerical Model of CME Initiation and Shock Development for the 1998 May 2 Event Ilia.
High Altitude Observatory (HAO) – National Center for Atmospheric Research (NCAR) The National Center for Atmospheric Research is operated by the University.
Free Magnetic Energy in Solar Active Regions above the Minimum-Energy Relaxed State (Regnier, S., Priest, E.R ApJ) Use magnetic field extrapolations.
Merging of coronal and heliospheric numerical two-dimensional MHD models D. Odstrcil, et al., J. Geophys. Res., 107, 年 10 月 14 日 太陽雑誌会 ( 速報.
Nonlinear effects on torsional Alfven waves S. Vasheghani Farahani, V.M. Nakariakov, T. Van Doorsselaere, E. Verwichte.
Coronal Heating of an Active Region Observed by XRT on May 5, 2010 A Look at Quasi-static vs Alfven Wave Heating of Coronal Loops Amanda Persichetti Aad.
ABSTRACT This work concerns with the analysis and modelling of possible magnetohydrodynamic response of plasma of the solar low atmosphere (upper chromosphere,
Force on Floating bodies:
ACKNOWLEDGMENTS This research was supported by the National Science Foundation of China (NSFC) under grants , , , the Specialized.
Numerical Simulation on Flow Generated Resistive Wall Mode Shaoyan Cui (1,2), Xiaogang Wang (1), Yue Liu (1), Bo Yu (2) 1.State Key Laboratory of Materials.
Supergranulation Waves in the Subsurface Shear Layer Cristina Green Alexander Kosovichev Stanford University.
Stability Properties of Field-Reversed Configurations (FRC) E. V. Belova PPPL 2003 International Sherwood Fusion Theory Conference Corpus Christi, TX,
BGU WISAP Spectral and Algebraic Instabilities in Thin Keplerian Disks: I – Linear Theory Edward Liverts Michael Mond Yuri Shtemler.
Flare Energy Build-Up in a Decaying Active Region Near a Coronal Hole Yingna Su Smithsonian Astrophysical Observatory Collaborators: A. A. van Ballegooijen,
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Reconnection & Flares Part II movie courtesy of G. Stenborg.
Valentina Zharkova 1 and Olga Khabarova Department of Mathematics, University of Bradford, Bradford BD7 1DP, UK ( ) 2.
Electron behaviour in three-dimensional collisionless magnetic reconnection A. Perona 1, D. Borgogno 2, D. Grasso 2,3 1 CFSA, Department of Physics, University.
I. INTRODUCTION Gas Pressure Magnetic Tension Coronal loops are thin and bright structure of hot plasma emitting intense radiation in X-ray and EUV. (1)
3D Reconnection Simulations of Descending Coronal Voids Mark Linton in collaboration with Dana Longcope (MSU)
3D simulations of solar emerging flux ISOBE Hiroaki Plasma seminar 2004/04/28.
Three-Dimensional MHD Simulation of Astrophysical Jet by CIP-MOCCT Method Hiromitsu Kigure (Kyoto U.), Kazunari Shibata (Kyoto U.), Seiichi Kato (Osaka.
M. Onofri, F. Malara, P. Veltri Compressible magnetohydrodynamics simulations of the RFP with anisotropic thermal conductivity Dipartimento di Fisica,
Simulation Study of Magnetic Reconnection in the Magnetotail and Solar Corona Zhi-Wei Ma Zhejiang University & Institute of Plasma Physics Beijing,
Numerical study of flow instability between two cylinders in 2D case V. V. Denisenko Institute for Aided Design RAS.
Initial Conditions As an initial condition, we assume that an equilibrium disk rotates in a central point-mass gravitational potential (e.g., Matsumoto.
A Numerical Study of the Breakout Model for Coronal Mass Ejection Initiation P. MacNeice, S.K. Antiochos, A. Phillips, D.S. Spicer, C.R. DeVore, and K.
Shock heating by Fast/Slow MHD waves along plasma loops
Yang Henglei( 杨恒磊 ),Wang Xiaogang( 王晓钢 ) State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams; The Department of Physics;
Introduction to Space Weather Jie Zhang CSI 662 / PHYS 660 Spring, 2012 Copyright © The Sun: Magnetic Structure Feb. 16, 2012.
On Coronal Mass Ejections and Configurations of the Ambient Magnetic Field Yang Liu Stanford University 3/17/ COSPAR 2008.
Initiation of Coronal Mass Ejections: Implications for Forecasting Solar Energetic Particle Storms Ron Moore, Alphonse Sterling, David Falconer, John Davis.
THE DYNAMIC EVOLUTION OF TWISTED MAGNETIC FLUX TUBES IN A THREE-DIMENSIONALCONVECTING FLOW. II. TURBULENT PUMPING AND THE COHESION OF Ω-LOOPS.
Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. L. Boundary Motion-Driven Evolution Amari, T., Luciani, J. F., Aly, J. J., Mikic,
Zurab Vashalomidze (1) In collaboration with
Chapter 8 Antennas Propagation Dave Piersall, N6ORB.
Ward Manchester University of Michigan
Scientists Propose Mechanism to Describe Solar Eruptions of All Sizes
3-D Magnetohydrodynamics Simulation of the Solar Emerging Flux
Abstract We simulate the twisting of an initially potential coronal flux tube by photospheric vortex motions. The flux tube starts to evolve slowly(quasi-statically)
Series of high-frequency slowly drifting structure mapping the magnetic field reconnection M. Karlicky, A&A, 2004, 417,325.
Introduction to Space Weather
Preflare State Rust et al. (1994) 太陽雑誌会.
MHD Simulation of Plasmoid-Induced-Reconnection in Solar Flares
Generation of Alfven Waves by Magnetic Reconnection
Fig. 5 3D MHD simulation of multiple plasmoid formation and ejection in the vertical current sheet spawned by an erupting flux rope. 3D MHD simulation.
Presentation transcript:

Simulation Study of Three-Dimensional and Nonlinear Dynamics of Flux Rope in the Solar Corona INOUE Satoshi(Hiroshima University/Earth Simulator Center), KUSANO Kanya(Earth Simulator Center) Abstract We numerically investigated the three-dimensional(3D) stability and the nonlinear dynamics of flux rope embedded in magnetic arcade. As a results, we found that the flux rope is unstable to the kink mode instability, as the system approach to the loss- of-equilibrium state. The 3D simulation shows that when the flux rope is long enough, it can escape from the arcade with almost constant speed after the accelerated launching due to the kink instability. This constant ascending is driven by magnetic reconnection on the current sheet, which is formed above the magnetic neutral line as a consequence of the instability. However, when the flux rope is short enough, the current sheet can not be maintained, so that the ascending is failed at some height. These results imply that the nonlinear effect mainly influenced by magnetic reconnection may determine whether the flux rope is ejected or not. 2Dsimulation 3Dsimulatio n Priest, Forbes(1990) proposed Loss-of-equilibrium model to explain filament eruption phenomena. This model is that the changing boundary condition causes filament eruption due to brake the equilibrium condition. Because filament is stability in two-dimensional space, it was able to arrive at loss-of-equilibrium point, so this model was not considered three-dimensional insta -bility. Therefore, we investigated the stability around loss-of- equilibrium point in three-dimensional space. Linear Stability Analysis The equilibriums from Priest, Forbes become unstable to kink mode instability. The equilibriums near the loss of equilibrium are more unstable than other equilibriums. Therefore it is pos- sible that filament eruption is occurred due to instability before reach the loss-of-equilibrium point. γ Loss of Equilibrium Point Fig2(a) is equilibrium line for Flux Rope embedded in coronal loop. Fig2(b) is represented the linear growth rate vs. h/d. Fig2(c) is eigen-functions. Parameters, m : Dipole moment, d : Dipole depth from solar surface h : Filament height from solar surface I 0 : Current in Flux Tube We show the results of the 3D MHD simulation. The different equilibria for M=2 and M=2.08 were used as the initial conditions, respectively. The Two simulations were carried out respectively for Lx=0.6 and 1.5, in which the system length Lx=0.6 corresponds to the wave length giving the maximum growth rate. The eigen-functions obtained from the linear growth calculation are added to the equilibrium as small and initial perturbation. We represented the flux tube dynamics in the three-dimen -sional space. The upper panel is case for Lx = 0.6, the lower panel is for Lx = 1.5 at M=2. In these figures, each string represents magnetic field line, green surface is an isosurface of the strength Bx, which is along Fig1(a) is equilibrium line for Flux Rope embedded in coronal loop. Fig2(b) is the flux rope dynamics in two-dimensional space as M=1.5. Loss of Equilibrium point the flux rope, and the red surface is an isosurface of the current intensity |J|. We can see that firstly the center of the flux rope is lifted up due to the growth of kink mode, and secondary the field lines evolve nonlinearly. Fig(b) is the time profile of height and velocity of flux tube in the both cases. We showed that the ascending of short flux tube(Lx=0.6) is failed at certain height, whereas the long flux tube continuously ascends after the growth of the kink mode instability. In the final state of Fig(a), the current sheet is sustained in long flux tube, although it disappears in short one. It may be important the current sheet formation in the late phase that the filament continuously ascends. Discussion Summar y We carried out a hypothetical simulation to confirm the importance of current sheet formation, i.e, magnetic reconnection on it. In the case of failed eruption(Lx=0.6, M=2.0875), we imposed an external force on the center of the flux rope from t=22.49 to By this force, the stretching of the field line corresponding to feet of the arcade may further help the formation of current sheet, so that reconnection could be self-sustained. As a result, flux tube is enlarged and, by external force, forms current sheet in the lower part. Furthermore, the flux tube ascending because reconnection is self-sustained in the lower part after finishing external force without failing. Fig4(a) is represented the 3D flux rope structure acted external force, Fig4(b) is the current sheet distributions, Fig4(c) is time profile of flux rope height, red line is no external force, and blue line is acted external force. Lx=0.6 Fig3(a)Fig3(b) Fig1(a)Fig2(a) Fig2(b)Fig2(c) Fig4(a) Fig4(b) Fig4(c) (1) It is important the formation of current sheet in the lower part that flux rope continuously ascends without failing at certain height. (2) There could be a critical height beyond which filament must exceed to escape to the infinity. Lx=1.5