The Nature of Friction Friction (F f ) is a force that works against the motion of an object! Friction involves objects/surfaces/materials that are in.

Slides:



Advertisements
Similar presentations
FORCE A force is any influence that can change the velocity of a body. Forces can act either through the physical contact of two objects (contact forces:
Advertisements

Chapter 4 The Laws of Motion.
1 Chapter Four Newton's Laws. 2  In this chapter we will consider Newton's three laws of motion.  There is one consistent word in these three laws and.
Normal Force Force on an object perpendicular to the surface (Fn)
Make a sketch Problem: A 10.0 kg box is pulled along a horizontal surface by a rope that makes a 30.0 o angle with the horizontal. The tension in the rope.
When a car accelerates forward on a level roadway, which force is responsible for this acceleration? State clearly which.
Sliding Friction A force that opposes motion Acts parallel to the
Net Force Problems There are 2 basic types of net force problems
Forces in Two Dimensions - Objectives 1.Addition of ForcesAddition of Forces 2.Resolution of ForcesResolution of Forces 3.Equilibrium and StaticEquilibrium.
Warm-up m = 54 kg g = 9.81 m/s² θ= 15° Sin θ = Fx/mg Fx = mg sin θ
T101Q7. A spring is compressed a distance of h = 9.80 cm from its relaxed position and a 2.00 kg block is put on top of it (Figure 3). What is the maximum.
 Force on objects whose surfaces are in contact  Acts in the opposite direction of motion  Acts parallel to the surface.
FRICTION SLEDS, SANDPAPER, AND LOTS of SLIDING. Friction Any force that resists motion It involves objects that are in contact with each other. This is.
Inclined Plane Problems
Friction is a force that opposes the motion between two surfaces that are in contact  is a force that opposes the motion between two surfaces that are.
Physics Review What Are Newton's Laws of Motion?.
Chapter 4 Forces and the Laws of Motion. Chapter Objectives Define force Identify different classes of forces Free Body Diagrams Newton’s Laws of Motion.
Newton’s Laws - continued
A 6. 0-kg object undergoes an acceleration of 2. 0 m/s2
Physics 203 – College Physics I Department of Physics – The Citadel Physics 203 College Physics I Fall 2012 S. A. Yost Chapter 4 Newton’s Laws – Part 3.
Physics is a drag!.  The force that resist motion  Represented by symbol F f  Measured in Newtons  Acts parallel to the surface in contact  Acts.
FRICTION!.
NEWTON’S SECOND LAW.
Applications involving Friction. What is Friction?  Friction is a FORCE that opposes or impedes the motion of an object.  Friction is caused by microscopic.
What is the weight of a 15 kg rock?
by the normal force acting on a sliding block?
The Nature of Friction “don’t let it rub you the wrong way”
Newton’s Laws and Dynamics
CHAPTER 4 The Laws of Motion Newton’s First Law: Newton’s First Law: An object at rest remains at rest and an object in motion continues in motion with.
Newton’s Laws - continued Friction, Inclined Planes, N.T.L., Law of Gravitation.
SECOND LAW OF MOTION If there is a net force acting on an object, the object will have an acceleration and the object’s velocity will change. Newton's.
What is a Force? A force is a push or a pull causing a change in velocity or causing deformation.
– coefficient of kinetic friction
Force Diagrams And Types of Forces. Review Force = push or pull. Measured in Newtons. –1 lb = 4.45 N F net = ma a = F net / m Big force = big acceleration.
Lecture 9: Forces & Laws of Motion. Questions of Yesterday You must apply a force F to push your physics book across your desk at a constant velocity.
Bellwork Pick up a free-body diagram sheet and begin working on it.
Friction Friction Problem Situations. Friction Friction F f is a force that resists motion Friction involves objects in contact with each other. Friction.
Friction Kinetic and Static. Forces of Friction - arises from the electromagnetic forces between atoms and molecules at the surfaces of objects - is a.
Friction Ffriction = μFNormal.
Friction What is friction?. Answer Me!!! Think of two factors that affect friction.
Newton’s Second Law of Motion – Force & Acceleration
Ch 4 – Forces and the Laws of Motion. What is a force? A force is a push or pull A force causing a change in velocity –An object from rest starts moving.
Free Body diagrams and problem solving
More Fun with Newton’s Laws Friction, Inclined Planes, N.T.L.
Forces and the Laws of Motion
FRICTION.
Box slides along horizontal at velocity constant. FfFf FpFp FwFw v c therefore,  F = 0 ; F p + F f = 0 ; F F = -F p Rest, therefore,  F = 0 ; F W +
 Friction – force that opposes motion  Caused by microscopic irregularities of a surface  The friction force is the force exerted by a surface as an.
4.8 Friction and inclines.
Mechanics 1 Friction.
Push and Pull Newton’s Laws. Newton’s First Law An object at rest remains at rest, and an object in motion continues in motion with constant velocity.
Lesson 4.4 Everyday Forces Essential Question: What are some of the everyday forces?
Physics is a drag!.  The force that resist motion  Ff  Measured in Newtons  Acts parallel to the surface in contact  Acts opposite to the direction.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
Physics Section 4.4 Describe various types of forces Weight is a measure of the gravitational force exerted on an object. It depends upon the objects.
The “Spring Force” If an object is attached to a spring and then pulled or pushed, the spring will exert a force that is proportional to the displacement.
The Force of Friction. What Do We Already Know about forces? Newton’s Laws 1.An object at rest remains at rest until acted upon by an unbalanced force.
Forces Friction The Lucky Cow The driver of the car applies the brakes to avoid hitting the cow. But how does this cause the car to slow down and stop?
-A force that opposes motion -Acts parallel to the surfaces in contact.
Lecture 5Purdue University, Physics 2201 Lecture 05 Forces and Motion beyond 1 D Textbook Sections 3.7, 4.1 PHYSICS 220.
 Gravity is 9.8 or ~10 m/s 2  If dropped from rest: y = -½ gt 2.
Unit is the NEWTON(N) Is by definition a push or a pull Can exist during physical contact(Tension, Friction, Applied Force) Can exist with NO physical.
Example Problems for Newton’s Second Law Answers
The Nature of Friction OR Here’s where things start to get rough
Free Body diagrams and problem solving
Friction is one of the most important opposing forces.
Work and Power.
FRICTION.
Presentation transcript:

The Nature of Friction Friction (F f ) is a force that works against the motion of an object! Friction involves objects/surfaces/materials that are in contact with one another!

Different Types of Friction Static friction- the force you must overcome to get an object sliding. Sliding friction- the force of friction that exists as one surface slides past another. Friction static > Friction sliding because of inertia Rolling friction- wheels on the ground Fluid friction- air resistance, water drag

Characteristics of Sliding Friction 1) Friction acts parallel to the surface and opposite of the motion! 2) Friction depends on the type of materials in contact! 3) Sliding friction is always less than starting(static) friction! 4) Friction is independent of the surface area in contact! 5) Friction depends upon the Normal Force!

Measuring Sliding Friction The amount of friction between two surfaces is represented by the Coefficient of Sliding Friction. Coefficient of Sliding Friction (µ) depends directly upon the amount of friction force (F f ) and inversely upon the force pressing the surfaces together (N). µ = FfNFfN

Examples of Friction force diagrams: A box pulled horizontally across a level floor at constant speed: FwFw FaFa FfFf N Balanced Forces? Yes- constant speed! F a = F f F w = N

A crate sliding down an incline at constant speed: ø FwFw FnFn ø FpFp FfFf N Balanced Forces? Yes- constant speed! F f = F p N = F n

A box weighing 450 N is pulled along a level floor at constant speed by a rope that makes an angle of 30.0˚ with the floor. If the force in the rope is 260 N, what is the coefficient of sliding friction? FwFw FaFa FhFh FvFv N FfFf F w = 450 N F a = 260 N ø = 30.0˚ ø

Balanced Forces? Yes- constant speed! y direction: F w = N + F v x direction:F h = F f µ = F f N F h = F f cosø = F h /F a F h = cosø(F a ) = cos(30.0˚)(260 N) = 225N

N = F w - F v sinø = F v /F a F v = sinø(F a ) = sin(30.0˚)(260 N) = 130 N N = 450 N N = 320 N µ = F f N = 225 N 320 N =.703

A force of 225 N is applied horizontally to a box of mass 40.0 kg and it produces an acceleration of 2.50 m/s 2. What must be the coefficient of friction? FwFw FaFa FfFf N F a = 225 N m = 40.0 kg F w = mg = 392 N a = 2.50 m/s 2 µ = ?

Balanced Forces?No- Acceleration! x direction: F a > F f F a - F f = F y direction: F w = N µ = F f N F f = F a - F F = ma = (40.0 kg)(2.50m/s 2 ) = 100 N= 225 N N = 125 N 392 N =.319

A rope is used to pull a 75.0 kg crate up a 35.0˚ incline at constant speed. If the coefficient of friction between the crate and the plane is.480, what must the tension in the rope be? ø FwFw FnFn FpFp FaFa ø FfFf Nm = 75.0 kg F w = mg = 735 N ø = 35.0˚ µ =.480 F a = ?

Balanced Forces?Yes- constant speed! F a = F f + F p N = F n F p = sinø(F w )= sin(35.0)(735N) = 422N F n = cosø(F w )= cos(35.0)(735N) = 602 N F f = µN = (.480)(602 N) = 289N F a = 422 N N = 711 N

A box of mass 125 kg is accelerated at 1.50 m/s 2 across a level floor by a rope tied at a 28.5˚ angle to the horizontal. If the tension in the rope is found to be 555 N, what is µ? FwFw FaFa ø FhFh FvFv FfFf N m = 125 kg F w = mg = 1230 N ø = 28.5˚ F a = 555 N µ = ? Balanced?No- Acceleration! a = 1.50 m/s 2

F h > F f F h - F f = F F w = N + F v µ = F f N F f = F h - F F h = cosø(F a ) = cos(28.5˚)(555 N) = 488 N F = ma =(125 kg)(1.50 m/s 2 ) = 188 N F f = 488 N N = 300 N

N = F w - F v F v = sinø(F a ) = sin(28.5˚)(555 N) = 265N N = 1230 N N = 965 N µ = F f N = 300 N 965 N =.311

A 56.0 kg box is accelerated across a level floor by a force applied horizontally to the box. If the coefficient of friction is.340 and the box is accelerated at 3.00 m/s 2, what force is being used to move the box? A 565 N crate is pulled up a 25.0˚ incline at constant speed. If the coefficient of sliding friction is measured as.250, what must be the tension in the rope used to pull the crate up the incline?

A 3.00 kg wood box slides from rest down a 35.0˚ inclined plane. How long does it take the box to reach the bottom of the 4.75 m incline if the coefficient of friction is.350? A 60.0 kg crate is attached to a weight by a cord that passes over a frictionless pulley. A) If the coefficient of friction is.500, what weight will keep the crate moving up a 20.0˚ incline at constant speed? B) If the cord is cut when the crate is at rest at the top, how far will the crate have slid down the incline by the time its speed reaches 7.50 m/s?